Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1574-1584.
Yiyuan Cheng1,Xingxing Zha1,*(),Yongquan Zhang2
Received:
2020-04-21
Online:
2021-10-26
Published:
2021-10-08
Contact:
Xingxing Zha
E-mail:cyymath@163.com
Supported by:
CLC Number:
Yiyuan Cheng,Xingxing Zha,Yongquan Zhang. On Stochastic Accelerated Gradient with Convergence Rate of Regression Learning[J].Acta mathematica scientia,Series A, 2021, 41(5): 1574-1584.
1 |
Robbins H , Monro S . A Stochastic approximation method. Annals of Mathematical Statistics, 1951, 22 (3): 400- 407
doi: 10.1214/aoms/1177729586 |
2 |
Polyak B T , Juditsky A B . Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, 1992, 30 (4): 838- 855
doi: 10.1137/0330046 |
3 | Bottou L, Bousquet O. The tradeoffs of large scale learning//Platt J C, Koller D, Singer Y, et al. Adv Neural Inform Process Syst 20. Cambridge: MIT Press, 2008 |
4 | Shalev-Shwartz S , Singer Y , Srebro N , Cotter A . Pegasos: Primal estimated sub-gradient solver for SVM. Math Prog, 2007, 127 (1): 3- 30 |
5 |
Nemirovski A , Juditsky A , et al. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 2009, 19 (4): 1574- 1609
doi: 10.1137/070704277 |
6 |
Lan G , Monteiro R D C . Iteration-complexity of first-order penalty methods for convex programming. Mathematical Programming, 2013, 138, 115- 139
doi: 10.1007/s10107-012-0588-x |
7 | Ghadimi S , Lan G . Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Mathematical Programming, 2016, 156 (1/2): 59- 99 |
8 | Bach F, Moulines E. Non-asymptotic analysis of stochastic approximation algorithms for machine learning//Platt J C, Koller D, Singer Y, et al. Adv Neural Inform Process Syst 20. Cambridge: MIT Press, 2011: 451-459 |
9 | Bach F, Moulines E. Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)//Platt J C, Koller D, Singer Y, et al. Adv Neural Inform Process Syst 20. Cambridge: MIT Press, 2013 |
10 | Duchi J , Hazan E , Singer Y . Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 2010, 12, 2121- 2159 |
11 |
Gasnikov A V , Nesterov Y E , Spokoiny V G . On the efficiency of a randomized mirror descent algorithm in online optimization problems. Computational Mathematics&Mathematical Physics, 2015, 55, 580- 596
doi: 10.1134/S0965542515040041 |
12 |
Beck A , Teboulle M . A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sciences, 2009, 2, 183- 202
doi: 10.1137/080716542 |
13 |
Tseng P , Yun S . Incrementally updated gradient methods for constrained and regularized optimization. Journal of Optimization Theory & Applications, 2014, 160 (3): 832- 853
doi: 10.1007/s10957-013-0409-2 |
14 |
Nesterov Y . Smooth minimization of nonsmooth functions. Mathematical Programming, 2005, 103, 127- 152
doi: 10.1007/s10107-004-0552-5 |
15 | Nesterov Y . Subgradient methods for huge-scale optimization problems. Mathematical Programming, 2014, 146 (1/2): 275- 297 |
16 | Lan G . An optimal method for stochastic composite optimization. Mathematical Programming, 2012, 133 (1): 365- 397 |
17 |
Ghadimi S , Lan G . Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization Ⅰ: A Generic Algorithmic Framework. SIAM Journal on Optimization, 2012, 22, 1469- 1492
doi: 10.1137/110848864 |
18 | Ghadimi S , Lan G . Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Mathematical Programming, 2016, 156 (1/2): 59- 99 |
19 | Ghadimi S , Lan G , Zhang H C . Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming, 2016, 155 (1/2): 267- 305 |
20 | Lan G . Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization. Mathematical Programming, 2013, 149, 1- 45 |
[1] | Juan Wang,Jie Zhao. Homogenization of the Oscillating Robin Mixed Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2021, 41(1): 81-90. |
[2] | Juan Wang,Jie Zhao. Homogenization of Higher-Order Equations with Mixed Boundary Condition [J]. Acta mathematica scientia,Series A, 2020, 40(4): 925-933. |
[3] | Juan Wang,Jie Zhao. Homogenization of the Neumann Boundary Value Problem: The Sharper W1, p Estimate [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1115-1124. |
[4] | Yao Qingliu. Existence and Successively Iterative Method of Singular Solution to a Nonlinear Fractional Differential Equation [J]. Acta mathematica scientia,Series A, 2016, 36(2): 287-296. |
[5] | XI Fu-Bao. Exponential Convergence Rates for Markov Processes with Markovian Switching [J]. Acta mathematica scientia,Series A, 2009, 29(4): 1051-1057. |
[6] | YIN Chang-Ming, LI Yong-Ming, WANG Peng-Yan. Strong Convergence Rates of the Maximum Quasi-Likelihood Estimator in Generalized Linear Models [J]. Acta mathematica scientia,Series A, 2009, 29(4): 1058-1064. |
[7] | JIN Jing-Sen. Convergence Rate in the Law of |Logarithm for NA Random Fields [J]. Acta mathematica scientia,Series A, 2009, 29(4): 1138-1143. |
[8] | SONG Yi-Sheng, YANG Chang-Sen. Solving Variational Inequality with Weak Contraction by Using Viscosity Approximation Methods [J]. Acta mathematica scientia,Series A, 2009, 29(3): 656-668. |
[9] | Tang Qingguo; Wang Jinde. One-step Estimation for Varying Coefficient Models with Unknown Functions of Different Degrees of Smoothness [J]. Acta mathematica scientia,Series A, 2008, 28(4): 701-710. |
[10] | Gan Shixin;Chen Pingyan. Strong Convergence Rate of Weighted Sums for NOD Sequences [J]. Acta mathematica scientia,Series A, 2008, 28(2): 283-290. |
[11] | CENG Liu-Chuan. Ishikawa Iteration Process with Errors for Solutions to Equations Involving Accretive Operators [J]. Acta mathematica scientia,Series A, 2004, 4(6): 654-660. |
[12] | Zhu Zhongyi, Wei Bocheng. Strong Uniform Convergence Rates for Nonparametric Estimations of Conditional Functional and its Derivatives [J]. Acta mathematica scientia,Series A, 1998, 18(4): 394-401. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 216
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|