1 |
Kolyada S , Snoha L . Topological entropy of nonautononous dynamical systems. Random Comput Dyn, 1996, 4, 205- 233
|
2 |
Elaydi S . Nonautonomous difference equations: open problems and conjectures. Fields Inst Commun, 2004, 42, 423- 428
|
3 |
Elaydi S , Sacker R J . Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures. J Difference Equ Appl, 2005, 11, 337- 346
doi: 10.1080/10236190412331335418
|
4 |
Canovas J S . Li-Yorke chaos in a class of nonautonomous discrete systems. J Difference Equ Appl, 2011, 17, 479- 486
doi: 10.1080/10236190903049025
|
5 |
Kumar A , Vats R K , Kumar A . Approximate controllability of second-order non-autonomous system with finite delay. J Dyn Control Syst, 2020, 3, 1- 17
doi: 10.1007/s10883-019-09475-0?utm_source=xmol
|
6 |
Shao H , Chen G , Shi Y . Topological conjugacy between induced non-autonomous set-valued systems and subshifts of finite. Type Qual Theor Dyn Syst, 2020, 19 (1): 295- 308
doi: 10.1007/s12346-020-00369-2
|
7 |
Shao H , Chen G , Shi Y . Some criteria of chaos in non-autonomous discrete dynamical systems. J Differ Equ Appl, 2020, 7, 1- 14
|
8 |
Li R S , Zhao Y , Wang H . Stronger forms of transitivity and sensitivity for non-autonomous discrete dynamical systems and furstenberg families. J Dyn Cont Syst, 2020, 26, 109- 126
doi: 10.1007/s10883-019-09437-6
|
9 |
卢天秀, 朱培勇, 吴新星. 非自治离散系统的分布混沌性. 数学物理学报, 2015, 35A (3): 558- 566
doi: 10.3969/j.issn.1003-3998.2015.03.010
|
|
Lu T X , Zhu P Y , Wu X X . Distributional chaos in nonautonomous discrete systems. Acta Math Sci, 2015, 35A (3): 558- 566
doi: 10.3969/j.issn.1003-3998.2015.03.010
|
10 |
卢天秀, 辛邦颖, 毛巍. 关于非自治离散系统中敏感性的一些结论. 数学物理学报, 2017, 37A (5): 808- 813
doi: 10.3969/j.issn.1003-3998.2017.05.002
|
|
Lu T X , Xin B Y , Mao W . Some properties of sensitivity in nonautonomous discrete systems. Acta Math Sci, 2017, 37A (5): 808- 813
doi: 10.3969/j.issn.1003-3998.2017.05.002
|
11 |
Tang X , Chen G R , Lu T X . Some iterative properties of F-chaos in non-autonomous discrete systems. Entropy, 2018, 20 (3): 188
doi: 10.3390/e20030188
|
12 |
Li T Y , Yorke J A . Period three implies chaos. Amer Math Monthly, 1975, 82 (10): 985- 992
doi: 10.1080/00029890.1975.11994008
|
13 |
Devaney R L. An Introduction to Chaotic Dynamical Systems. New York: Addison Wesley, 1989
|
14 |
Schweizer B , Smital J . Measure of chaos and a spectral decomposition of dynamical systems of interval. Trans Amer Math Soc, 1994, 344, 737- 754
doi: 10.1090/S0002-9947-1994-1227094-X
|
15 |
Wang L D , Huang G , Huan S . Distributional chaos in a sequence. Nonlinear Anal, 2007, 67, 2131- 2136
doi: 10.1016/j.na.2006.09.005
|
16 |
Bayart F , Bermudez T . Dynamics of Linear Operators. Cambridge: Cambridge University Press, 2009
|
17 |
Khan M S I , Islam M S . A chaotic three dimensional non-linear autonomous system beyond lorenz type systems. J Bangladesh Acad Sci, 2012, 36 (2): 159- 170
doi: 10.3329/jbas.v36i2.12959
|
18 |
Bernardes N C , Bonilla A , Muller V , Peris A . Distributional chaos for linear operators. J Funct Anal, 2013, 265, 2143- 2163
doi: 10.1016/j.jfa.2013.06.019
|
19 |
Balibrea F . On problems of topological dynamics in non-autonomous discrete systems. Appl Math Nonlinear Sci, 2016, 1, 391- 404
doi: 10.21042/AMNS.2016.2.00034
|
20 |
Li R S , Lu T X , Waseem A . Sensitivity and transitivity of systems satisfying the large deviations theorem in a sequence. Int J Bifurcation and Chaos, 2019, 29 (9): 420- 431
|
21 |
Wu X X , Liang S , Ma X , et al. The mean sensitivity and mean equicontinuity on uniform spaces. Int J Bifurcation and Chaos, 2020, 30 (8): 2050122
doi: 10.1142/S0218127420501229
|
22 |
Wu X X , Ma X , Chen G R , Lu T X . A note on the sensitivity of semiflows. Topology Appl, 2020, 271, 107046
doi: 10.1016/j.topol.2019.107046
|
23 |
Li J , Oprocha P , Wu X X . Furstenberg families, sensitivity and the space of probability measures. Nonlinearity, 2017, 30, 987- 1005
doi: 10.1088/1361-6544/aa5495
|
24 |
Li R S , Lu T X , Chen G R , Yang X F . Further discussion on Kato's chaos in set-valued discrete systems. J Appl Anal Comput, 2020, 10 (6): 2491- 2505
|