Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (3): 797-810.
Previous Articles Next Articles
Tianjiao Kou1(), Eburilitu1,*(), Alatancang2()
Received:
2020-05-14
Online:
2021-06-26
Published:
2021-06-09
Contact:
Eburilitu
E-mail:1849208969@qq.com;ebu@imu.edu.cn;altanca@imu.edu.cn
Supported by:
CLC Number:
Tianjiao Kou, Eburilitu, Alatancang. Symplectic Superposition Solution for the Bending of a Corner Point-Supported and the Other Opposite Edge Clamped Orthotropic Rectangular Thin Plate[J].Acta mathematica scientia,Series A, 2021, 41(3): 797-810.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
present | 0.02943 | 0.02436 | 0.01842 | 0.01115 | 0.002789 | ||
Ref.[ | 0.02949 | 0.02442 | 0.01847 | 0.01118 | 0.002783 | ||
present | -0.01137 | -0.008667 | 0.002233 | 0.01683 | 0.03146 | ||
Ref.[ | -0.01161 | -0.008872 | 0.002031 | 0.01663 | 0.03130 | ||
present | 0.05251 | 0.04247 | 0.03168 | 0.01956 | 0.006469 | ||
present | 0.01263 | 0.013099 | 0.022244 | 0.03556 | 0.05058 | ||
present | 0.08433 | 0.06754 | 0.05032 | 0.03202 | 0.013093 | ||
present | 0.04384 | 0.041989 | 0.048879 | 0.06048 | 0.07534 | ||
present | 0.12619 | 0.10093 | 0.07574 | 0.04992 | 0.023990 | ||
present | 0.08095 | 0.076966 | 0.081643 | 0.09153 | 0.10597 | ||
present | 0.17962 | 0.14421 | 0.10954 | 0.07485 | 0.040737 | ||
present | 0.12328 | 0.117456 | 0.120189 | 0.12860 | 0.14255 |
"
present | 4.50209 | 4.33322 | 3.83644 | 2.59816 | 0.53881 | ||
present | -0.269027 | -0.247932 | -0.206159 | -0.101362 | 0.121649 | ||
present | 9.67375 | 8.79869 | 7.35414 | 4.77077 | 1.11120 | ||
present | -0.382724 | -0.341621 | -0.264498 | -0.106729 | 0.173482 | ||
present | 18.21916 | 15.81380 | 12.62913 | 7.97018 | 2.02218 | ||
present | -0.499650 | -0.437193 | -0.320878 | -0.104608 | 0.231455 | ||
present | 31.03660 | 26.01927 | 20.08335 | 12.44326 | 3.35009 | ||
present | -0.612517 | -0.528390 | -0.372671 | -0.096795 | 0.293216 | ||
present | 48.96215 | 40.04606 | 30.15277 | 18.44113 | 5.16290 | ||
present | -0.716491 | -0.609928 | -0.416522 | -0.084249 | 0.356611 |
1 |
曲文斌, 吴剑国, 单鲁阳. 基于有限元法的正交各向异性板的屈曲分析. 材料研究与应用, 2010, 2, 13- 18
doi: 10.3969/j.issn.1673-9981.2010.01.004 |
Qu W B , Wu J G , Shan L Y . Buckling analysis of orthotropic plates based on finite element method. Materials Research and Application, 2010, 2, 13- 18
doi: 10.3969/j.issn.1673-9981.2010.01.004 |
|
2 | Civalek Ö . Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation. Journal of Sound and Vibration, 2006, 294 (4/5): 966- 980 |
3 | 赵中凯, 张君华, 刘彦琦. 基于谱方法的矩形薄板自由振动分析. 力学研究, 2019, 8 (1): 54- 64 |
Zhao Z K , Zhang J H , Liu Y Q . Free vibration analysis of rectangular thin plates based on spectral method. International Journal of Mechanics Research, 2019, 8 (1): 54- 64 | |
4 | Latifi M , Farhatnia F , Kadkhodaei M . Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion. European Journal of Mechanics A/Solids, 2013, 41 (11): 16- 27 |
5 |
贾红刚, 聂玉峰. 各向异性板半无限裂纹平面问题的保角变换解法. 应用数学学报, 2013, 36 (2): 243- 248
doi: 10.3969/j.issn.0254-3079.2013.02.006 |
Jia H G , Nie Y F . Conformal mapping solution of anisotropic semi-infinite crack plane problem. Acta Mathematicae Applicatae Sinica, 2013, 36 (2): 243- 248
doi: 10.3969/j.issn.0254-3079.2013.02.006 |
|
6 |
Gorman D J , Singhal R . Free vibration analysis of cantilever plates with step discontinuities in properties by the method of superposition. Journal of Sound and Vibration, 2002, 253 (3): 631- 652
doi: 10.1006/jsvi.2001.4067 |
7 | 钟万勰. 分离变量法与哈密尔顿体系. 计算结构力学及其应用, 1991, 8 (3): 229- 240 |
Zhong W X . Method of separation of variables and Hamiltonian system. Computational Structural Mechanics and Applications, 1991, 8 (3): 229- 240 | |
8 |
Yao W A , Hu X F , Xiao F . Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation. Acta Mechanica Sinica, 2011, 27 (6): 929- 937
doi: 10.1007/s10409-011-0532-y |
9 |
Liu Y M , Li R . Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach. Applied Methematical Modelling, 2010, 34, 856- 865
doi: 10.1016/j.apm.2009.07.003 |
10 |
Li R , Yu T , Zheng X R , et al. New analytic bending solutions of rectangular thin plates with a corner point-supported and its adjacent corner free. European Journal of Mechanics-A/Solids, 2017, 66, 103- 113
doi: 10.1016/j.euromechsol.2017.06.009 |
11 | 额布日力吐, 冯璐, 阿拉坦仓. 四边固支正交各向异性矩形薄板弯曲问题的辛叠加方法. 应用数学和力学, 2018, 39 (3): 311- 323 |
Eburilitu , Feng L , Alatancang . Analytical bending solutions of clamped orthotropic rectangular thin plates with the symplectic superposition method. Applied Mathematics and Mechanics, 2018, 39 (3): 311- 323 | |
12 |
Li R , Wang P C , Yang Z K , et al. On new analytic free vibration solutions of rectangular thin cantilever plates in the symplectic space. Applied Mathematical Modelling, 2018, 53, 310- 318
doi: 10.1016/j.apm.2017.09.011 |
13 |
Li R , Zheng X R , Wang P C , et al. New analytic free vibration solutions of orthotropic rectangular plates by a novel symplectic approach. Acta Mech, 2019, 230, 3087- 3101
doi: 10.1007/s00707-019-02448-1 |
14 | Li R , Zhou C , Zheng X . On new analytic free vibration solutions of doubly curved shallow shells by the symplectic superposition method within the Hamiltonian-system framework. Journal of Vibration and Acoustics, 2020, 143, 1- 33 |
15 |
Li R , Zheng X , Yang Y , et al. Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels. Applied Mathematical Modelling, 2019, 76, 900- 917
doi: 10.1016/j.apm.2019.07.020 |
16 |
Zheng X , Sun Y , Huang M , et al. Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels. International Journal of Mechanical Sciences, 2019, 152, 432- 442
doi: 10.1016/j.ijmecsci.2019.01.012 |
17 | Yao W A, Zhong W X, Lim C W. Symplectic Elasticity. Singapore: World Scientific, 2009 |
18 | 高立梅, 额布日力吐. Winkler地基上四边自由正交各向异性矩形薄板弯曲问题的辛叠加解. 固体力学学报, 2020, 41 (1): 83- 92 |
Gao L M , Eburilitu . Symplectic superposition solution for the bending problem of a free orthotropic rectangular thin plate on Winkler foundation. Chinese Journal of Solid Mechanics, 2020, 41 (1): 83- 92 |
[1] | Wanpeng Geng,Wenxiu Ren,Yisu Cheng. Second Order Recursion Operator Structure of Constant Coefficient Infinite Dimension Hamiltonian System [J]. Acta mathematica scientia,Series A, 2021, 41(2): 326-335. |
[2] | Lumin Geng,Huizhan Chen,Na Li,Jipeng Cheng. The Squared Eigenfunction Symmetries and Miura Transformations for the KP and mKP Hierarchies [J]. Acta mathematica scientia,Series A, 2020, 40(1): 10-19. |
[3] | Luo Hua. Spectral Theory of Linear Weighted Sturm-Liouville Eigenvalue Problems [J]. Acta mathematica scientia,Series A, 2017, 37(3): 427-449. |
[4] | Li Kun, Zheng Zhaowen. Spectral Properties for Sturm-Liouville Equations with Transmission Conditions [J]. Acta mathematica scientia,Series A, 2015, 35(5): 910-926. |
[5] | Liu Jie, Huang Junjie, Alatancang. Generation Theorems of Semigroups for Hamiltonian Operator Matrices [J]. Acta mathematica scientia,Series A, 2015, 35(5): 936-946. |
[6] | WANG Hua, Alatanchang, HUANG Jun-Jie. Multiplicity and Completeness of a Class of |Hamiltonian |Operators and Its Applications [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1507-1517. |
[7] | Qi Ya-Ru, HUANG Jun-Jie, Alatancang. Invertibility of Formal Hamiltonian Operators with Unbounded Entries [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1188-1195. |
[8] | ZHENG Zhao-Wen, XU Yan-Li. A New Description of Self-adjoint Domains of Singular Linear Hamiltonian Operators [J]. Acta mathematica scientia,Series A, 2014, 34(1): 157-170. |
[9] | Alatancang, HAI Guo-Jun. The Essential Spectrum for a Class of Infinite Dimensional Hamiltonian Operator and Its Applications [J]. Acta mathematica scientia,Series A, 2013, 33(5): 984-992. |
[10] | WU De-Yu, Alatancang. The Convergence or Divergence for Eigenfunction Expansion of Infinite Dimensional Hamiltonian Operator [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1559-1566. |
[11] | WANG Hua, Alatancang, HUANG Jun-jie. Algebraic Index of Eigenvalues of Infinite-dimensional Hamiltonian Operators [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1266-1272. |
[12] | Xu Genqi, Yang Mingzhu, Wang Shenghua. The Completeness of Generalized Eigenfunction System of the Transport Operator for a Nonhomogeneous Convex Medium [J]. Acta mathematica scientia,Series A, 1997, 17(2): 163-169. |
|