Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (3): 770-782.
Previous Articles Next Articles
Received:
2019-09-18
Online:
2021-06-26
Published:
2021-06-09
Supported by:
CLC Number:
Jiangfu Zhao. Geometric Probability of Subspaces Intersecting with a Convex Body in
1 | Xie F F , Li D Y . On generalized Buffon needle problem for lattices. Acta Mathematica Scientia, 2011, 31B (1): 303- 308 |
2 | 谢凤繁, 胡适耕. E3中有界网格的Buffon问题. 数学物理学报, 2011, 31A (2): 410- 414 |
Xie F F , Hu S G . On Buffon problem for bounded lattices in E3. Acta Math Sci, 2011, 31A (2): 410- 414 | |
3 |
李德宜, 蒋慧峰, 熊革. 凸体形状匹配的参考点. 数学杂志, 2005, 25 (3): 336- 340
doi: 10.3969/j.issn.0255-7797.2005.03.020 |
Li D Y , Jiang H F , Xiong G . The reference point of matching ahapes. J of Math, 2005, 25 (3): 336- 340
doi: 10.3969/j.issn.0255-7797.2005.03.020 |
|
4 |
李寿贵, 韩汇芳, 杨佩佩. 平行四边形内点与边界点的平均距离. 武汉科技大学学报, 2011, 34 (5): 376- 380
doi: 10.3969/j.issn.1674-3644.2011.05.014 |
Li S G , Han H F , YANG P P . The average distance from the interior points to the boundary points of a parallelogram. Journal of Wuhan University of Science and Technology, 2011, 34 (5): 376- 380
doi: 10.3969/j.issn.1674-3644.2011.05.014 |
|
5 |
李德宜, 杨佩佩, 李亭. 矩形的弦长分布. 武汉科技大学学报, 2011, 34 (5): 381- 383
doi: 10.3969/j.issn.1674-3644.2011.05.015 |
Li D Y , Yang P P , Li T . Chord length distribution of rectangles. Journal of Wuhan University of Science and Technology, 2011, 34 (5): 381- 383
doi: 10.3969/j.issn.1674-3644.2011.05.015 |
|
6 |
黄朝霞. 蒲丰投针问题研究. 集美大学学报(自然科学版), 2005, 10 (4): 381- 384
doi: 10.3969/j.issn.1007-7405.2005.04.021 |
Huang Z X . Study on Buffon throwing problem. Journal of Jimei University (Natural Science), 2005, 10 (4): 381- 384
doi: 10.3969/j.issn.1007-7405.2005.04.021 |
|
7 | 王媛媛, 李德宜, 李雪婵, 等. 正三棱柱的Buffon投针问题. 数学杂志, 2013, 33 (5): 887- 890 |
Wang Y Y , Li D Y , Li X C , et al. Buffon needle problem in regula tri-prism. J of Math, 2013, 33 (5): 887- 890 | |
8 | 邹明田, 李寿贵, 陈莉莉. 一类特殊网格的几何概率. 数学杂志, 2014, 34 (2): 374- 378 |
Zou M T , Li S G , Chen L L . A special class of the geometric probability. J of Math, 2014, 34 (2): 374- 378 | |
9 | Ren D L . Topics in Integral Geometry. Singapore: World Scientific, 1994 |
10 |
Zhang G Y . Dual kinematic formulas. Transactions of the American Mathematical Society, 1999, 351 (3): 985- 995
doi: 10.1090/S0002-9947-99-02053-X |
11 | Santalo L A . Integral Geometry and Geometric Probability. London: Addidion-Wesley, 1976 |
12 |
Merca M . New convolutions for complete and elementary symmetric functions. Integral Transforms and Special Functions, 2016, 27 (12): 965- 973
doi: 10.1080/10652469.2016.1233405 |
13 | Macdonald I G . Symmetric Functions and Hall Polynomials. 2nd ed Oxford: Clarendon Press, 1995 |
14 | 曾春娜, 姜德烁. 关于凸集平均曲率积分的注记. 重庆师范大学学报(自然科学版), 2013, 30 (5): 62- 65 |
Zeng C N , Jiang D S . Some notes on mean curvature integral of convex sets. Journal of Chongqing Normal University (Natural Science), 2013, 30 (5): 62- 65 | |
15 | 曾春娜, 柏仕坤. 关于凸集的平均曲率积分的不等式(Ⅱ). 重庆师范大学学报(自然科学版), 2017, 34 (6): 57- 60 |
Zeng C N , Bo S K . Some inequalities on mean curvature integral of convex sets (Ⅱ). Journal of Chongqing Normal University (Natural Science), 2017, 34 (6): 57- 60 | |
16 | Zeng C N , Ma L , Xia Y W . On mean curvature integrals of the outer parallel body of the projection of a convex body. Journal of Inequalities and Applications, 2014, Article number, 415 |
17 |
周家足. ![]() ![]() |
Zhou J Z . Willmore functional and inclusion problems in ![]() ![]() |
|
18 | Zhang G Y, Zhou J Z. Containment Measures in Integral Geometry//Grinberg E, Li S G, Zhang G Y, Zhou J Z. Integral Geometry and Convexity. Singapore: World Scientific, 2005: 153-168 |
19 | John G . On Wallis formula. The American Mathematical Monthly, 1956, 63 (9): 643- 645 |
20 | Guo B N , Q F . On the increasing monotonicity of sequence originating from computation of the probability of intersecting between a plane couple and a convex body. Turkish Journal of Analysis and Number Theory, 2015, 3 (1): 21- 23 |
[1] | Hexin Zhang. On Reducing Subspaces of a Class of Integral Operator on Dirichlet Spaces [J]. Acta mathematica scientia,Series A, 2021, 41(3): 595-602. |
[2] | Shenglian Wan. A Double Projection Algorithm for Solving Variational Inequalities [J]. Acta mathematica scientia,Series A, 2021, 41(1): 237-244. |
[3] | ZHANG Geng-Sheng, GUO Jun, ZHANG Jing-Xuan. Lattices Generated by Joins of Elements in Orbits of Subspaces under Finite Unitary Groups [J]. Acta mathematica scientia,Series A, 2009, 29(3): 757-763. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 58
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|