Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (3): 740-761.
Previous Articles Next Articles
Received:
2020-03-23
Online:
2021-06-26
Published:
2021-06-09
Contact:
Bin Wu
E-mail:binwu@nuist.edu.cn
Supported by:
CLC Number:
Bin Wu,Qun Chen. Lipschitz Stability for a Transport Coefficient Inverse Problem of a Linearly Coupled Korteweg-de Vries System[J].Acta mathematica scientia,Series A, 2021, 41(3): 740-761.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Baudouin L , Cerpa E , Crépeau E , Mercado A . On the determination of the principal coefficient from boundary measurements in a KdV equation. J Inverse Ill-Posed Prob, 2014, 22, 819- 845 |
2 | Bellassoued M , Yamamoto M . Lipschitz stability in determining density and two Lamé coefficients. J Math Anal Appl, 2017, 329, 1240- 1259 |
3 |
Bellassoued M , Yamamoto M . Carleman estimates and an inverse heat source problem for the thermoelasticity system. Inverse Probl, 2011, 27, 015006
doi: 10.1088/0266-5611/27/1/015006 |
4 |
Bellassoued M , Yamamoto M . Carleman estimate and inverse source problem for Biot's equations describing wave propagation in porous media. Inverse Probl, 2013, 29, 115002
doi: 10.1088/0266-5611/29/11/115002 |
5 | Bukhgeim A L , Klibanov M V . Uniqueness in the large of a class of multidimensional inverse problems. Soviet Math Dokl, 1981, 17, 244- 247 |
6 |
Caicedo M A , Capistrano-Filho R , Zhang B Y . Neumann boundary controllability of the Korteweg-de Vries equation on a bounded domain. SIAM J Control Optim, 2017, 55, 3503- 3532
doi: 10.1137/15M103755X |
7 |
Capistrano-Filho R , Pazoto A F , Rosier L . Internal controllability of the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim Calc Var, 2015, 21, 1076- 1107
doi: 10.1051/cocv/2014059 |
8 |
Carréno N , Guerrero S . Uniform null controllability of a linear KdV equation using two controls. J Math Anal Appl, 2018, 457, 922- 943
doi: 10.1016/j.jmaa.2017.08.039 |
9 |
Cerpa E , Rivas I , Zhang B Y . Boundary controllability of the Korteweg-de Vries equation on a bounded domain. SIAM J Control Optim, 2013, 51, 2976- 3010
doi: 10.1137/120891721 |
10 |
Chen M . Lipschitz stability in an inverse problem for the Korteweg-de Vries equation on a finite domain. Boundary Value Problems, 2007, 2017, 48
doi: 10.1186/s13661-017-0779-8 |
11 | Coron J M , Crépeau E . Exact boundary controllability of a nonlinear KdV equation with a critical length. J Eur Math Soc, 2004, 31, 367- 398 |
12 |
Dias F , Il'ichev A . Interfacial waves with free-surface boundary conditions: an approach via a model equation. Physica D, 2001, 150, 278- 300
doi: 10.1016/S0167-2789(01)00149-X |
13 |
Fochesato C , Dias F , Grimshaw R . Generalized solitary waves and fronts in coupled Korteweg-de Vries systems. Physica D, 2005, 210, 96- 117
doi: 10.1016/j.physd.2005.07.010 |
14 |
Gao P . Carleman estimate and unique continuation property for the linear stochastic Korteweg-de Vries equation. Bull Aust Math Soc, 2014, 90, 283- 294
doi: 10.1017/S0004972714000276 |
15 |
Glass O , Guerrero S . Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot Anal, 2008, 60, 61- 100
doi: 10.3233/ASY-2008-0900 |
16 |
Grimshaw R , Pelinovsky E , Talipova T . The modified Korteweg-de Vries equation in the theory of the large-amplitude internal waves. Nonlinear Process Geophys, 1997, 4, 237- 250
doi: 10.5194/npg-4-237-1997 |
17 |
Imanuvilov O Y . Controllability of parabolic equations. Sbornik Math, 1995, 186, 879- 900
doi: 10.1070/SM1995v186n06ABEH000047 |
18 |
Imanuvilov O Y , Yamamoto M . Carleman estimates for the non-stationary Lemé system and application to an inverse problem. ESAIM Control Optim Calc Var, 2005, 11, 1- 56
doi: 10.1051/cocv:2004030 |
19 |
Imanuvilov O Y , Yamamoto M . Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Probl, 2001, 17, 717- 728
doi: 10.1088/0266-5611/17/4/310 |
20 | Isakov V . Inverse Problems for Partial Differential Equations. Berlin: Springer-Verlag, 1998 |
21 |
Isakov V , Kim N . Carleman estimates with second large parameter and applications to elasticity with residual stress. Applicationes Mathematicae, 2008, 35, 447- 465
doi: 10.4064/am35-4-4 |
22 | Klibanov M V , Timonov A . Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. Utrecht: VSP, 2004 |
23 | Klibanov M V . Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J Inverse Ill-Posed Prob, 2013, 21, 477- 560 |
24 |
Klibanov M V , Kolesov A E . Convexification of a 3-D coefficient inverse scattering problem. Computers and Mathematics with Applications, 2019, 77, 1681- 1702
doi: 10.1016/j.camwa.2018.03.016 |
25 |
Klibanov M V , Kolesov A E , Nguyen L , Sullivan A . Globally strictly convex cost functional for a 1D inverse medium scattering problem with experimental data. SIAM J Applied Mathematics, 2017, 77, 1733- 1755
doi: 10.1137/17M1122487 |
26 |
Kumarasamy S , Hasanov A . An inverse problem for the KdV equation with Neumann boundary measured data. J Inverse Ill-Posed Prob, 2018, 26, 133- 151
doi: 10.1515/jiip-2017-0038 |
27 |
Romanov V G , Yamamoto M . Recovering a Lamé kernel in viscoelastic equation by a single boundary measurement. Appl Anal, 2010, 89, 377- 390
doi: 10.1080/00036810903518975 |
28 |
Rosier L . Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line. SIAM J Control Optim, 2000, 39, 331- 351
doi: 10.1137/S0363012999353229 |
29 |
Rousseau J , Lebeau G . On Carleman estimates for elliptic and parabolic operators Applications to unique continuation and control of parabolic equations. ESAIM Control Optim Calc Var, 2012, 18, 712- 747
doi: 10.1051/cocv/2011168 |
30 |
Saut J , Scheurer B . Unique continuation for some evolution equations. J Differential Equations, 1987, 66, 118- 139
doi: 10.1016/0022-0396(87)90043-X |
31 |
Tang S , Zhang X . Null controllability for forward and backward stochastic parabolic equations. SIAM J Control Optim, 2009, 48, 2191- 2216
doi: 10.1137/050641508 |
32 |
Wu B , Gao Y , Wang Z , Chen Q . Unique continuation for a reaction-diffusion system with cross diffusion. J Inverse Ill-Posed Prob, 2019, 27, 511- 525
doi: 10.1515/jiip-2017-0094 |
33 |
Wu B , Liu J . Conditional stability and uniqueness for determining two coefficients in a hyperbolic-parabolic system. Inverse Probl, 2011, 27, 075013
doi: 10.1088/0266-5611/27/7/075013 |
34 |
Wu B , Yu J , Wang Z . A coefficient identification problem for a mathematical model related to ductal carcinoma in situ. Stud Appl Math, 2019, 143, 356- 372
doi: 10.1111/sapm.12281 |
35 |
Yamamoto M . Carleman estimates for parabolic equations and applications. Inverse Probl, 2009, 25, 123013
doi: 10.1088/0266-5611/25/12/123013 |
[1] | Wu Bin, Gao Ying, Yan Lin, Yu Jun. Carleman Estimate for a 2×2 Strongly Coupled Partial Differential System with Nonsingular Coefficient Matrix of Principal Parts and Application to an Inverse Source Problem [J]. Acta mathematica scientia,Series A, 2018, 38(4): 779-799. |
|