Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (2): 507-522.
Previous Articles Next Articles
Xiaoni Chi1,2,*(),Rong Zeng1,3,Sanyang Liu4,Zhibin Zhu1
Received:
2019-03-15
Online:
2021-04-26
Published:
2021-04-29
Contact:
Xiaoni Chi
E-mail:chixiaoni@126.com
Supported by:
CLC Number:
Xiaoni Chi,Rong Zeng,Sanyang Liu,Zhibin Zhu. A Regularized Nonmonotone Inexact Smoothing Newton Algorithm for Weighted Symmetric Cone Complementarity Problems[J].Acta mathematica scientia,Series A, 2021, 41(2): 507-522.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
Algorithm 4.1 | Grippo's method | Zhang-Hager's method | ||||||
n | ACPU | AIter | ACPU | AIter | ACPU | AIter | ||
100 | 0.0077 | 4.86 | 0.0097 | 4.96 | 0.0080 | 4.94 | ||
200 | 0.0327 | 5.08 | 0.0340 | 5.16 | 0.0353 | 5.26 | ||
300 | 0.0967 | 6.00 | 0.0997 | 6.00 | 0.0995 | 6.00 | ||
400 | 0.2683 | 6.00 | 0.2763 | 6.00 | 0.2835 | 6.00 | ||
500 | 0.4576 | 6.00 | 0.4810 | 6.02 | 0.4757 | 6.02 | ||
600 | 0.7771 | 6.50 | 0.7824 | 6.58 | 0.9503 | 6.66 | ||
700 | 1.2112 | 7.00 | 1.2178 | 7.00 | 1.5006 | 7.00 | ||
800 | 1.6096 | 7.00 | 1.6162 | 7.00 | 1.7667 | 7.00 |
"
SOCCP(w =0) | wSOCCP(w = e) | wSOCCP(w = (1, 1, 0, …, 0)T) | ||||||
n | ACPU | AIter | ACPU | AIter | ACPU | AIter | ||
100 | 0.0092 | 5.54 | 0.0077 | 4.86 | 0.0081 | 5.00 | ||
200 | 0.0404 | 6.00 | 0.0327 | 5.08 | 0.0403 | 6.00 | ||
300 | 0.1084 | 6.52 | 0.0967 | 6.00 | 0.0999 | 6.00 | ||
400 | 0.3224 | 7.00 | 0.2683 | 6.00 | 0.2885 | 6.10 | ||
500 | 0.6037 | 7.00 | 0.4576 | 6.00 | 0.5476 | 7.00 | ||
600 | 0.8666 | 7.12 | 0.7771 | 6.50 | 0.8525 | 7.00 | ||
700 | 1.3798 | 7.82 | 1.2112 | 7.00 | 1.2700 | 7.00 | ||
800 | 1.9243 | 8.00 | 1.6096 | 7.00 | 1.6915 | 7.00 |
"
SOCCP(w =0) | wSOCCP(w = e) | wSOCCP(w = (1, 1, 0, …, 0)T) | ||||||
n | ACPU | AIter | ACPU | AIter | ACPU | AIter | ||
100 | 0.0180 | 6.24 | 0.0145 | 5.02 | 0.0179 | 6.00 | ||
200 | 0.0617 | 7.08 | 0.0512 | 6.00 | 0.0621 | 7.00 | ||
300 | 0.1395 | 7.76 | 0.1145 | 6.54 | 0.1294 | 7.28 | ||
400 | 0.3378 | 8.22 | 0.2916 | 7.00 | 0.3434 | 8.00 | ||
500 | 0.6096 | 8.92 | 0.4744 | 7.00 | 0.5601 | 8.02 | ||
600 | 0.9576 | 9.28 | 0.8505 | 7.24 | 0.9394 | 8.96 | ||
700 | 1.4090 | 9.50 | 1.3711 | 8.00 | 1.3584 | 9.00 | ||
800 | 2.2010 | 9.76 | 1.6803 | 8.00 | 1.7638 | 9.00 |
1 |
Potra F A . Weighted complementarity problems-a new paradigm for computing equilibria. SIAM J Optim, 2012, 22 (4): 1634- 1654
doi: 10.1137/110837310 |
2 | Anstreicher K M . Interior-point algorithms for a generalization of linear programming and weighted centring. Optim Methods Softw, 2012, 27 (4/5): 605- 612 |
3 |
Potra F A . Sufficient weighted complementarity problems. Comput Optim Appl, 2016, 64 (2): 467- 488
doi: 10.1007/s10589-015-9811-z |
4 |
Jian Z . A smoothing Newton algorithm for weighted linear complementarity problem. Optim Lett, 2016, 10 (3): 499- 509
doi: 10.1007/s11590-015-0877-4 |
5 |
Chi X N , Gowda M S , Tao J Y . The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra. J Global Optim, 2019, 73 (1): 153- 169
doi: 10.1007/s10898-018-0689-z |
6 |
Chen X J , Qi L Q , Sun D F . Global and superlinear convergence of the smooothing Newton method and its application to general box constrained variational inequalities. Math Comput, 1998, 67 (222): 519- 540
doi: 10.1090/S0025-5718-98-00932-6 |
7 |
Chi X N , Liu S Y . A one-step smoothing Newton method for second-order cone programming. J Comput Appl Math, 2009, 223 (1): 114- 123
doi: 10.1016/j.cam.2007.12.023 |
8 | Hayashi S , Yamashita N , Fukushima M . A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J Optim, 2005, 15 (8): 593- 615 |
9 |
Huang Z H , Ni T . Smoothing algorithms for complementarity problems over symmetric cones. Comput Optim Appl, 2010, 45 (3): 557- 579
doi: 10.1007/s10589-008-9180-y |
10 |
Kong L C , Sun J , Xiu N H . A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM J Optim, 2008, 19 (3): 1028- 1047
doi: 10.1137/060676775 |
11 |
Fang L , He G P . Some modifications of Newton's method with higher-order convergence for solving nonlinear equations. J Comput Appl Math, 2009, 228 (1): 296- 303
doi: 10.1016/j.cam.2008.09.023 |
12 |
Liu Y J , Zhang L W , Wang Y H . Analysis of a smoothing method for symmetric conic linear programming. J Appl Math Comput, 2006, 22 (1/2): 133- 148
doi: 10.1007/BF02896466 |
13 |
Pan S H , Chen J S . A regularization method for the second-order cone complementarity problem with the Cartesian P0-property. Nonlinear Anal, 2009, 70 (4): 1475- 1491
doi: 10.1016/j.na.2008.02.028 |
14 |
Qi L Q , Sun D F , Zhou G L . A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math Program, 2000, 87 (1): 1- 35
doi: 10.1007/s101079900127 |
15 |
Tang J Y , Dong L , Zhou J C , et al. A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search. Optim, 2015, 64 (9): 1935- 1955
doi: 10.1080/02331934.2014.906595 |
16 |
Wu J , Zhang L W , Zhang Y . A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations. J Glob Optim, 2013, 55 (2): 359- 385
doi: 10.1007/s10898-012-9880-9 |
17 | Yu G L , Liu S Y . Optimality conditions of globally proper efficient solutions for set-valued optimization problems. Acta Math Appl Sin, 2010, 33 (1): 150- 160 |
18 | Zhang Y S , Gao L F . A smoothing inexact Newton method for symmetric cone complementarity problems. Acta Math Sci, 2015, 35A (4): 824- 832 |
19 | Chi X N , Liu S Y . An infeasible-interior-point predictor-corrector algorithm for the second-order cone program. Acta Math Sci, 2008, 28B (3): 551- 559 |
20 | Yoshise A . Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J Optim, 2006, 17 (4): 1129- 1153 |
21 | Wan Z P , Wang X J , He J L , et al. Asymptotic approximation method and its convegence on semi-infinite programming. Acta Math Sci, 2006, 26B (1): 17- 24 |
22 | Xu Y H , Liu S Y . The (h, φ)-Lipschitz function, its generalized directional derivative and generalized gradient. Acta Math Sci, 2006, 26A (2): 212- 222 |
23 |
Ahookhosh M , Ghaderi S . On efficiency of nonmonotone Armijo-type line searches. Appl Math Model, 2017, 43, 170- 190
doi: 10.1016/j.apm.2016.10.055 |
24 |
Grippo L , Lampariello F , Lucidi S . A nonmonotone line search technique for Newton's Method. SIAM J Numer Anal, 1986, 23 (4): 707- 716
doi: 10.1137/0723046 |
25 |
Zhang H , Hager W W . A nonmonotone line search technique and its application to unconstrained optimization. SIAM J Optim, 2004, 14 (4): 1043- 1056
doi: 10.1137/S1052623403428208 |
26 | Faraut J , Korányi A . Analysis on Symmetric Cones. New York: Oxford University Press, 1994 |
27 | Mifflin R . Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim, 1977, 15 (6): 957- 972 |
28 | Qi L , Sun J . A nonsmooth version of Newton's method. Math Program, 1993, 58 (1/3): 353- 367 |
29 | Clarke F H . Optimization and Nonsmooth Analysis. New York: Wiley, 1983 |
30 | Gowda M S , Sznajder R , Tao J . Some P-properties for linear transformations on Euclidean algebras. Linear Algebra Appl, 2004, 393 (1): 203- 232 |
31 |
Sun D , Sun J . Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions. Math Program, 2005, 103 (3): 575- 581
doi: 10.1007/s10107-005-0577-4 |
[1] | Guodong Ma. A Strongly Convergent Generalized Gradient Projection Method for Minimax Optimization with General Constraints [J]. Acta mathematica scientia,Series A, 2020, 40(3): 641-649. |
[2] | HU Chao-Ming, WAN Zhong, WANG Xu. A New Nonmonotone Spectral Conjugate Gradient Algorithm [J]. Acta mathematica scientia,Series A, 2013, 33(1): 78-88. |
[3] | TANG Jing-Yong, HE Guo-Ping. A One-step Smoothing Newton Method for Second-order Cone Programming [J]. Acta mathematica scientia,Series A, 2012, 32(4): 768-778. |
[4] | Zhang Li; Zhou Weijun. On the Global Convergence of the Hager-Zhang Conjugate Gradient Method with Armijo Line Search [J]. Acta mathematica scientia,Series A, 2008, 28(5): 840-845. |
[5] |
Tong Xiaojiao ;He Wei.
Lagrangian Globalization Projection Methods for Nonlinear Constrained Equations [J]. Acta mathematica scientia,Series A, 2008, 28(1): 96-108. |
[6] |
Zhou Changyin; He Guoping; Wang Yongli.
An Active Constraints Identification Technique-based SSLE Algorithm and Its Convergence Analysis [J]. Acta mathematica scientia,Series A, 2007, 27(3): 535-540. |
[7] | GAO Zi-You, Ren Hua-Ling, HE Guo-Ping. A New Sequential Systems of Linear Equations Algorithm Without Strict Complementary Slackness [J]. Acta mathematica scientia,Series A, 2004, 24(3): 275-284. |
[8] | Shi Baochang, Chen Ting, Zhu Shijing. A Unified Approach to Method of Centers for Multiobjective Decision Making [J]. Acta mathematica scientia,Series A, 1997, 17(S1): 15-22. |
|