Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (2): 479-495.
Previous Articles Next Articles
Yueyuan Liu,Kai Wang,Shujuan Qin,Jiaofen Li*()
Received:
2020-03-26
Online:
2021-04-26
Published:
2021-04-29
Contact:
Jiaofen Li
E-mail:lixiaogui1290@163.com
Supported by:
CLC Number:
Yueyuan Liu,Kai Wang,Shujuan Qin,Jiaofen Li. An Effective Algorithm for Generalized Sylvester Equation Minimization Problem Under Columnwise Orthogonal Constraints[J].Acta mathematica scientia,Series A, 2021, 41(2): 479-495.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
l, n, p, s | CPU(s) | IT | ||grad f(Xk)|| | f(Xk) | Xfeasi | |
Algo.1 | 0.134 | 183 | 7.202×10-4 | 0 | 9.744×10-16 | |
OptStiefel | 0.282 | 246 | 9.431×10-4 | 0 | 4.220×10-15 | |
Mixed | 15, 200, 10, 5 | 0.532 | 568 | 8.770×10-4 | 0 | 2.048×10-15 |
SOC | 3.775 | 196 | 9.278×10-4 | 0 | 3.593×10-2 | |
ADM | 3.485 | 49 | 9.823×10-4 | 0 | 5.866×10-2 | |
Major | 11.784 | 20000 | 6.235×10-2 | 0.0003 | 5.209×10-15 | |
Algo.1 | 0.205 | 170 | 7.973×10-4 | 0 | 1.324×10-15 | |
OptStiefel | 0.904 | 271 | 5.123×10-4 | 0 | 1.832×10-14 | |
Mixed | 30, 300, 15, 5 | 1.524 | 956 | 9.914×10-4 | 0 | 2.808×10-15 |
SOC | 15.229 | 219 | 9.536×10-4 | 0 | 3.578×10-2 | |
ADM | 14.663 | 206 | 9.741×10-4 | 0 | 3.356×10-2 | |
Major | 32.982 | 20000 | 3.500×10-1 | 0.0018 | 6.742×10-15 | |
Algo.1 | 0.673 | 486 | 5.942×10-4 | 0 | 1.595×10-15 | |
OptStiefel | 1.154 | 356 | 5.515×10-4 | 0 | 1.449×10-15 | |
Mixed | 45, 400, 20, 5 | 4.586 | 1393 | 8.224×10-4 | 0 | 4.064×10-15 |
SOC | 54.639 | 116 | 9.679×10-4 | 0 | 5.821×10-2 | |
ADM | 31.334 | 37 | 9.979×10-4 | 0 | 1.635×10-1 | |
Major | 114.029 | 20000 | 4.797 | 0.2222 | 8.883×10-15 | |
Algo.1 | 0.647 | 293 | 4.311×10-4 | 0 | 1.277×10-15 | |
OptStiefel | 1.216 | 364 | 9.407×10-4 | 0 | 1.277×10-15 | |
Mixed | 50, 500, 20, 5 | 5.546 | 1156 | 7.179×10-4 | 0 | 3.165×10-15 |
SOC | 72.800 | 51 | 8.914×10-4 | 0 | 1.201×10-1 | |
ADM | 72.570 | 46 | 8.835×10-4 | 0 | 1.313×10-1 | |
Major | 185.344 | 20000 | 2.804 | 0.0429 | 7.434×10-15 | |
Algo.1 | 0.609 | 239 | 5.557×10-1 | 0.0001 | 2.313×10-15 | |
OptStiefel | 1.125 | 398 | 1.635×10-2 | 0 | 1.524×10-15 | |
Mixed | 60, 400, 30, 5 | 9.036 | 2072 | 1.069×10-3 | 0 | 4.994×10-15 |
SOC | 88.718 | 56 | 9.967×10-4 | 0 | 9.761×10-2 | |
ADM | 105.745 | 99 | 9.206×10-4 | 0 | 1.023×10-1 | |
Major | 217.668 | 20000 | 1.224×101 | 0.7462 | 9.998×10-15 | |
Algo.1 | 1.866 | 636 | 7.307×10-4 | 0 | 1.272×10-15 | |
OptStiefel | 1.846 | 518 | 9.739×10-4 | 0 | 8.997×10-16 | |
Mixed | 70, 500, 15, 5 | 8.198 | 1966 | 5.506×10-4 | 0 | 2.639×10-15 |
SOC | 58.076 | 97 | 8.202×10-4 | 0 | 1.162×10-1 | |
ADM | 57.401 | 83 | 9.283×10-4 | 0 | 1.065×10-1 | |
Major | 130.671 | 20000 | 7.300 | 0.4279 | 5.167×10-15 | |
Algo.1 | 1.289 | 645 | 5.152×10-4 | 0 | 1.798×10-15 | |
OptStiefel | 1.985 | 669 | 9.542×10-4 | 0 | 1.287×10-15 | |
Mixed | 80, 500, 20, 5 | 11.044 | 2311 | 8.951×10-4 | 0 | 3.750×10-15 |
SOC | 126.369 | 92 | 8.061×10-4 | 0 | 2.926×10-1 | |
ADM | 186.829 | 198 | 8.944×10-4 | 0 | 7.416×10-2 | |
Major | 183.599 | 20000 | 1.009×101 | 0.5858 | 7.192×10-15 |
1 |
Dehghan M , Hajarian M . An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices. Applied Mathematical Modelling, 2010, 34 (3): 639- 654
doi: 10.1016/j.apm.2009.06.018 |
2 |
Hajarian M . Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations. Applied Mathematical Modelling, 2015, 39 (19): 6073- 6084
doi: 10.1016/j.apm.2015.01.026 |
3 |
Hajarian M . Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix equations. Journal of the Franklin Institute, 2016, 353 (5): 1168- 1185
doi: 10.1016/j.jfranklin.2015.05.024 |
4 |
Li S K , Huang T Z . LSQR iterative method for generalized coupled Sylvester matrix equations. Applied Mathematical Modelling, 2012, 36 (8): 3545- 3554
doi: 10.1016/j.apm.2011.10.030 |
5 |
Ding F , Chen T . On iterative solutions of general coupled matrix equations. SIAM Journal on Control and Optimization, 2006, 44 (6): 2269- 2284
doi: 10.1137/S0363012904441350 |
6 |
Bouhamidi A , Jbilou K , Raydan M . Convex constrained optimization for large-scale generalized Sylvester equations. Computational Optimization and Applications, 2011, 48 (2): 233- 253
doi: 10.1007/s10589-009-9253-6 |
7 |
Bouhamidi A , Enkhbat R , Jbilou K . Conditional gradient Tikhonov method for a convex optimization problem in image restoration. Journal of Computational and Applied Mathematics, 2014, 255, 580- 592
doi: 10.1016/j.cam.2013.06.011 |
8 |
Li J F , Li W , Huang R . An efficient method for solving a matrix least squares problem over a matrix inequality constraint. Computational Optimization and Applications, 2016, 63 (2): 393- 423
doi: 10.1007/s10589-015-9783-z |
9 |
Escalante R , Raydan M . Dykstra's algorithm for a constrained least-squares matrix problem. Numerical Linear Algebra with Applications, 1996, 3 (6): 459- 471
doi: 10.1002/(SICI)1099-1506(199611/12)3:6<459::AID-NLA82>3.0.CO;2-S |
10 | Escalante R , Raydan M . Dykstra's algorithm for constrained least-squares rectangular matrix problems. Computers & Mathematics with Applications, 1998, 35 (6): 73- 79 |
11 | Monsalve M , Moreno J , Escalante R , Raydan M . Selective alternating projections to find the nearest SDD+ matrix. Applied Mathematics and Computation, 2003, 145 (2/3): 205- 220 |
12 |
Li J F , Hu X Y , Zhang L . Dykstra's algorithm for constrained least-squares doubly symmetric matrix problems. Theoretical Computer Science, 2010, 411 (31-33): 2818- 2826
doi: 10.1016/j.tcs.2010.04.011 |
13 |
Li J F , Li W , Vong S W , et al. A Riemannian optimization approach for solving the generalized eigenvalue problem for nonsquare matrix pencils. Journal of Scientific Computing, 2020, 82 (3): 1- 43
doi: 10.1007/s10915-020-01173-5 |
14 |
Meng C , Hu X , Zhang L . The skew-symmetric orthogonal solutions of the matrix equation AX=B. Linear Algebra and its Applications, 2005, 402, 303- 318
doi: 10.1016/j.laa.2005.01.022 |
15 | Kiers H A . Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Computational statistics & data analysis, 2002, 41 (1): 157- 170 |
16 |
Kanamori T , Takeda A . Numerical study of learning algorithms on Stiefel manifold. Computational Management Science, 2014, 11 (4): 319- 340
doi: 10.1007/s10287-013-0181-7 |
17 |
Lai R , Osher S . A splitting method for orthogonality constrained problems. Journal of Scientific Computing, 2014, 58 (2): 431- 449
doi: 10.1007/s10915-013-9740-x |
18 |
Chen W , Ji H , You Y . An augmented Lagrangian method for 1-regularized optimization problems with orthogonality constraints. SIAM Journal on Scientific Computing, 2016, 38 (4): B570- B592
doi: 10.1137/140988875 |
19 |
Sato H , Iwai T . A Riemannian optimization approach to the matrix singular value decomposition. SIAM Journal on Optimization, 2013, 23 (1): 188- 212
doi: 10.1137/120872887 |
20 |
Zhu X . A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Computational Optimization and Applications, 2017, 67 (1): 73- 110
doi: 10.1007/s10589-016-9883-4 |
21 |
Vandereycken B . Low-rank matrix completion by Riemannian optimization. SIAM Journal on Optimization, 2013, 23 (2): 1214- 1236
doi: 10.1137/110845768 |
22 |
Zhao Z , Jin X Q , Bai Z J . A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems. SIAM Journal on Numerical Analysis, 2016, 54 (4): 2015- 2035
doi: 10.1137/140992576 |
23 |
Yao T T , Bai Z J , Zhao Z , Ching W K . A Riemannian Fletcher-Reeves conjugate gradient method for doubly stochastic inverse eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 2016, 37 (1): 215- 234
doi: 10.1137/15M1023051 |
24 |
Yao T T , Bai Z J , Zhao Z . A Riemannian variant of the Fletcher-Reeves conjugate gradient method for stochastic inverse eigenvalue problems with partial eigendata. Numerical Linear Algebra with Applications, 2019, 26 (2): e2221
doi: 10.1002/nla.2221 |
25 |
Zhang L , Zhou W , Li D H . A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence. IMA Journal of Numerical Analysis, 2006, 26 (4): 629- 640
doi: 10.1093/imanum/drl016 |
26 | Absil P A , Mahony R , Sepulchre R . Optimization Aalgorithms on Matrix Manifolds. Princeton: Princeton University Press, 2009 |
27 | Wen Z , Yin W . A feasible method for optimization with orthogonality constraints. Mathematical Programming, 2013, 142 (1/2): 397- 434 |
28 |
Oviedo H , Lara H , Dalmau O . A non-monotone linear search algorithm with mixed direction on Stiefel manifold. Optimization Methods and Software, 2019, 34 (2): 437- 457
doi: 10.1080/10556788.2017.1415337 |
[1] | ZHU Li, XIA Fu-Quan . Levitin-Polyak Well-posedness of Generalized Mixed Variational Inequalities [J]. Acta mathematica scientia,Series A, 2012, 32(4): 633-643. |
[2] | YUAN Shi-Fang, LIAO An-Ping, LEI Yuan. Minimization Problem for Hermitian Matrices over the Quaternion Field [J]. Acta mathematica scientia,Series A, 2009, 29(5): 1298-1306. |
[3] | Peng Jianwen;Zhu Daoli. Strictly B -Preinvex Functions [J]. Acta mathematica scientia,Series A, 2006, 26(2): 200-206. |
|