Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (2): 451-467.
Previous Articles Next Articles
Received:
2020-02-25
Online:
2021-04-26
Published:
2021-04-29
Contact:
Pengzhan Huang
E-mail:lt1003887017@163.com;hpzh007@yahoo.com
Supported by:
CLC Number:
Ting Li,Pengzhan Huang. A Modular grad-div Stabilized Finite Element Method for Nematic Liquid Crystal Flow[J].Acta mathematica scientia,Series A, 2021, 41(2): 451-467.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
υ | An的算法[ | 算法2.1 | An的算法[ | 算法2.1 |
1.0 | 0.177291 | 0.016364 | 0.155393 | 0.015200 |
1.0e-1 | 0.411760 | 0.017199 | 1.797790 | 0.049710 |
1.0e-2 | 0.098620 | 0.021241 | 5.644600 | 0.122195 |
1.0e-3 | 1.147560 | 0.022955 | 7.007330 | 0.143346 |
1.0e-4 | 1.166460 | 0.023173 | 7.177150 | 0.145903 |
1 |
Akbas M , Linke A , Rebholz L G , Schroeder P W . The analogue of grad-div stabilization in DG methods for incompressible flows: Limiting behavior and extension to tensor-product meshes. Comput Methods Appl Mech Engrg, 2018, 341, 917- 938
doi: 10.1016/j.cma.2018.07.019 |
2 | Akbas M, Rebholz L G. Modular grad-div stabilization for multiphysics flow problems. 2020, arXiv: 2001. 10100 |
3 |
An R , Su J . Optimal error estimates of semi-implicit Galerkin method for time dependent nematic liquid crystal flows. J Sci Comput, 2018, 74, 979- 1008
doi: 10.1007/s10915-017-0479-7 |
4 |
Badia S , Guillén-Gónzalez F , Gutiérrez-Santacreu J V . An overview on numerical analyses of nematic liquid crystal flows. Arch Comput Methods Eng, 2011, 18, 285- 313
doi: 10.1007/s11831-011-9061-x |
5 |
Becker R , Feng X B , Prohl A . Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J Numer Anal, 2008, 46, 1704- 1731
doi: 10.1137/07068254X |
6 |
Bochev P , Dohrmann C , Gunzburger M . Stabilization of low-order mixed finite element for the Stokes equations. SIAM J Numer Anal, 2006, 44, 82- 101
doi: 10.1137/S0036142905444482 |
7 | Brenner S , Scott L . The Mathematical Theory of Finite Element Methods. Berlin: Springer, 1994 |
8 |
Cabrales R C , Guillén-González F , Gutiérrez-Santacreu J V . A time-splitting finite element stable approximation for the Ericksen-Leslie equations. SIAM J Sci Comput, 2015, 37, B261- B282
doi: 10.1137/140960979 |
9 |
Cabrales R C , Guillén-González F , Gutiérrez-Santacreu J V . A projection-based time-splitting algorithm for approximating nematic liquid crystal flows with stretching. Z Angew Math Mech, 2017, 97, 1204- 1219
doi: 10.1002/zamm.201600247 |
10 |
Du Q , Guo B , Shen J . Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J Numer Anal, 2001, 39, 735- 762
doi: 10.1137/S0036142900373737 |
11 | Ericksen J . Conservation laws for liquid crystals. Trans Soc Rheol, 1961, 5, 22- 34 |
12 | Ericksen J . Continuum theory of nematic liquid crystals. Res Mech, 1987, 21, 381- 392 |
13 | Fiordilino J A , Layton W , Rong Y . An efficient and modular grad-div stabilization. Comput Methods Appl Mech Engrg, 2018, 335, 917- 938 |
14 |
Franca L P , Hughes T J . Two classes of mixed finite element methods. Comput Methods Appl Mech Engrg, 1988, 69, 89- 129
doi: 10.1016/0045-7825(88)90168-5 |
15 |
Girault V , Guillén-González F . Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model. Math Comp, 2011, 80, 781- 819
doi: 10.1090/S0025-5718-2010-02429-9 |
16 |
Guillén-González F , Gutiérrez-Santacreu J V . A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model. ESAIM: Math Model Numer Anal, 2013, 47, 1433- 1464
doi: 10.1051/m2an/2013076 |
17 |
Guillén-González F , Koko J . A splitting in time scheme and augmented lagrangian method for a nematic liquid crystal problem. J Sci Comput, 2015, 65, 1129- 1144
doi: 10.1007/s10915-015-0002-y |
18 |
He Y N , Wang A W , Mei L Q . Stabilized finite-element method for the stationary Navier-Stokes equations. J Engrg Math, 2005, 51, 367- 380
doi: 10.1007/s10665-004-3718-5 |
19 |
Jenkins E W , John V , Linke A , Rebholz L G . On the parameter choice in grad-div stabilization for stokes equations. Adv Comput Math, 2014, 40, 491- 516
doi: 10.1007/s10444-013-9316-1 |
20 | Leslie F . Some constitutive equations for liquid crystals. Arch Ration Mech, 1987, 21, 381- 392 |
21 |
Lin F H . Nonlinear theory of defects in nematics liquid crystals: Phase transitation and flow phenomena. Commun Pure Appl Math, 1989, 42, 789- 814
doi: 10.1002/cpa.3160420605 |
22 |
Lin F H , Liu C . Existence of solutions for the Ericksen-Leslie system. Arch Ration Mech Anal, 2000, 154, 135- 156
doi: 10.1007/s002050000102 |
23 |
Lin F H , Lin J , Wang C . Liquid crystal flows in two dimensions. Arch Ration Mech Anal, 2010, 197, 297- 336
doi: 10.1007/s00205-009-0278-x |
24 |
Lin F H , Wang C . On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin Ann Math Ser B, 2010, 31, 921- 938
doi: 10.1007/s11401-010-0612-5 |
25 |
Linke A , Rebholz L G . On a reduced sparsity stabilization of grad-div type for incompressible flow problems. Comput Methods Appl Mech Engrg, 2013, 261/262, 142- 153
doi: 10.1016/j.cma.2013.04.005 |
26 |
Lu X , Huang P . A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations. J Sci Comput, 2020, 82, 3
doi: 10.1007/s10915-019-01114-x |
27 |
Minev P , Vabishchevich P N . Spliting schemes for unsteady problems involving the grad-div operator. Appl Numer Math, 2018, 124, 130- 139
doi: 10.1016/j.apnum.2017.10.005 |
28 |
Nochetto R , Pyo J H . A finite element gauge-Uzawa method. Part I: The Navier-Stokes equations. SIAM J Numer Anal, 2005, 43, 1043- 1068
doi: 10.1137/040609756 |
29 | Olshanskii M , Reusken A . Grad-div stabilization for Stokes equations. Math Comp, 2004, 73, 1699- 1718 |
30 |
Qin Y , Hou Y , Huang P , Wang Y . Numerical analysis of two grad-div stabilization methods for the time-dependent Stokes/Darcy model. Comput Math Appl, 2020, 79, 817- 832
doi: 10.1016/j.camwa.2019.07.032 |
31 | Rong Y, Fiordilino J A. Numerical analysis of a BDF2 modular grad-div Stabilization method for the Navier-Stokes equations. 2018, arXiv: 1806.10750 |
32 |
Song L , Hou Y , Cai Z . Recovery-based error estimator for stabilized finite element methods for the Stokes equation. Comput Meth Appl Mech Engrg, 2014, 272, 1- 16
doi: 10.1016/j.cma.2014.01.004 |
33 |
Song L , Su H , Feng X . Recovery-based error estimator for stabilized finite element method for the stationary Navier-Stokes problem. SIAM J Sci Comput, 2016, 38, A3758- A3772
doi: 10.1137/15M1015261 |
34 |
Zhang S , Liu C , Zhang H . Numerical simulations of hydrodynamics of nematic liquid crystals: Effects of kinematic transports. Commun Comput Phys, 2011, 9, 974- 993
doi: 10.4208/cicp.160110.290610a |
35 |
Zheng H , Hou Y , Shi F . A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow. SIAM J Sci Comput, 2010, 32, 1346- 1360
doi: 10.1137/090771508 |
|