Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (2): 382-387.
Previous Articles Next Articles
Received:
2020-02-21
Online:
2021-04-26
Published:
2021-04-29
Contact:
Qiru Wang
E-mail:mcswqr@mail.sysu.edu.cn
Supported by:
CLC Number:
Yangcong Qiu,Qiru Wang. Existence of Nonoscillatory Solutions Tending to Zero of Second-Order Neutral Dynamic Equations on Time Scales[J].Acta mathematica scientia,Series A, 2021, 41(2): 382-387.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Hilger S. Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten[D]. Würzburg: Universität Würzburg, 1988 |
2 |
Hilger S . Analysis on measure chain-a unified approach to continuous and discrete calculus. Results Math, 1990, 18, 18- 56
doi: 10.1007/BF03323153 |
3 |
Agarwal R P , Bohner M . Basic calculus on time scales and some of its applications. Results Math, 1999, 35, 3- 22
doi: 10.1007/BF03322019 |
4 |
Agarwal R P , Bohner M , O'Regan D , Peterson A . Dynamic equations on time scales: a survey. J Comput Appl Math, 2002, 141, 1- 26
doi: 10.1016/S0377-0427(01)00432-0 |
5 | Bohner M , Peterson A . Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhäuser, 2001 |
6 | Bohner M , Peterson A . Advances in Dynamic Equations on Time Scales. Boston: Birkhäuser, 2003 |
7 | Chen Y S . Existence of nonoscillatory solutions of nth order neutral delay differential equations. Funcialaj Ekvacioj, 1992, 35, 557- 570 |
8 | Deng X H , Wang Q R . Nonoscillatory solutions to second-order neutral functional dynamic equations on time scales. Commun Appl Anal, 2014, 18, 261- 280 |
9 | Gao J , Wang Q R . Existence of nonoscillatory solutions to second-order nonlinear neutral dynamic equations on time scales. Rocky Mt J Math, 2013, 43, 1521- 1535 |
10 | Mojsej I , Tartal'ová A . On nonoscillatory solutions tending to zero of third-order nonlinear differential equations. Tatra Mt Math Publ, 2011, 48, 135- 143 |
11 |
Qiu Y C . Nonoscillatory solutions to third-order neutral dynamic equations on time scales. Adv Differ Equ, 2014, 2014, 309
doi: 10.1186/1687-1847-2014-309 |
12 |
Qiu Y C . On nonoscillatory solutions tending to zero of third-order nonlinear dynamic equations on time scales. Adv Differ Equ, 2016, 2016, 10
doi: 10.1186/s13662-016-0742-5 |
13 |
Zhu Z Q , Wang Q R . Existence of nonoscillatory solutions to neutral dynamic equations on time scales. J Math Anal Appl, 2007, 335, 751- 762
doi: 10.1016/j.jmaa.2007.02.008 |
[1] | Ping Zhang,Jiashan Yang. Dynamical Properties of Second-Order Dynamic Equations with a Nonpositive Neutral Coefficient on a Time Scale [J]. Acta mathematica scientia,Series A, 2021, 41(1): 217-226. |
[2] | Zhongjian Zhao,Shaochun Chen. A Triangular Prism Finite Element for the Second-Order Elliptic Mixed Problem [J]. Acta mathematica scientia,Series A, 2020, 40(3): 684-693. |
[3] | Yingfei Fan, Guopeng Zhang, Xinguo Jiang, jian Ma. Attracting and Quasi-Invariant Sets of Second-Order Neutral Stochastic Partial Differential Equations [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1135-1143. |
[4] | Yang Jiashan, Li Tongxing. Oscillation for a Class of Second-Order Damped Emden-Fowler Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2018, 38(1): 134-155. |
[5] | Chen Hongbin, Gan Siqing, Xu Da, Peng Yulong. A Formally Second-Order BDF Compact ADI Difference Scheme for the Two-Dimensional Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2017, 37(5): 976-992. |
[6] | Li Zhouhong, Zhang Fengshuo, Cao Jinde, Alsaedi Ahmed, Alsaadi Fuad E. Almost Periodic Solution for a Non-Autonomous Two Species Competitive System with Feedback Controls on Time Scales [J]. Acta mathematica scientia,Series A, 2017, 37(4): 730-750. |
[7] | Luo Hua. Spectral Theory of Linear Weighted Sturm-Liouville Eigenvalue Problems [J]. Acta mathematica scientia,Series A, 2017, 37(3): 427-449. |
[8] | YANG Jia-Shan. Oscillation Criteria for Second-Order Dynamic Equations with Positive and Negative Coefficients and Damping on Time Scales [J]. Acta mathematica scientia,Series A, 2014, 34(2): 393-408. |
[9] | CHEN Da-Xue. Bounded Oscillation for Second-order Nonlinear Neutral Delay Dynamic Equations with Oscillating Coefficients [J]. Acta mathematica scientia,Series A, 2013, 33(1): 98-113. |
[10] | TANG Jing-Yong, HE Guo-Ping. A One-step Smoothing Newton Method for Second-order Cone Programming [J]. Acta mathematica scientia,Series A, 2012, 32(4): 768-778. |
[11] | WANG Wu-Sheng, ZHOU Xiao-Liang. A Generalized Pachpatte Type |Inequality on Time Scales and Application to a Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2012, 32(2): 404-413. |
[12] | LI Tong-Xin, HAN Zhen-Lai, ZHANG Cheng-Hui, SUN Yi-Bing. Oscillation Criteria for Third-order Emden-Fowler Delay Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2012, 32(1): 222-232. |
[13] | FENG Yao-Ling. The Solutions of Linear Dynamical Equations in Commutative Banach Algebra on Time Scales [J]. Acta mathematica scientia,Series A, 2011, 31(2): 439-446. |
[14] | SANG Yan-Bin, WEI Zhong-Li. Existence of Solutions to a Semipositone Third-order Three-point BVP on Time Scales [J]. Acta mathematica scientia,Series A, 2011, 31(2): 455-465. |
[15] | LI Xing-Chang, ZHAO Zeng-Qin. Solutions of Some m-point Boundary Value Problems for Second-order Differential Equations [J]. Acta mathematica scientia,Series A, 2010, 30(3): 718-729. |
|