Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (1): 227-236.
Previous Articles Next Articles
Received:
2019-12-24
Online:
2021-02-26
Published:
2021-01-29
Contact:
Zhi Li
E-mail:lizhi_csu@126.com
Supported by:
CLC Number:
Liping Xu,Zhi Li. Transportation Inequalities for Mixed Stochastic Differential Equations[J].Acta mathematica scientia,Series A, 2021, 41(1): 227-236.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Boufoussi B , Hajji S . Transportation inequalities for neutral stochastic differential equations driven by fractional Brownian motion with Hurst parameter lesser than 1/2. Mediterranean Journal of Mathematics, 2007, 14: 192 |
2 |
Djellout H , Guilin A , Wu L . Transportation cost-information inequalities for random dynamical systems and diffsions. Ann Probab, 2004, 32: 2702- 2732
doi: 10.1214/009117904000000531 |
3 | Da Prato G , Zabczyk J . Stochastic Equations in Infinite Dimonsionals. Cambridge: Cambridge University Press, 1992 |
4 | Gozlan N , Léonard C . Transport inequalities, A survey. Markov Process Related Fields, 2010, 16 (4): 635- 736 |
5 |
Guerra J , Nualart D . Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stoch Anal Appl, 2008, 26 (5): 1053- 1075
doi: 10.1080/07362990802286483 |
6 |
Kubilius K . The existence and uniqueness of the solution of an integral equation driven by a p-semimartingale of special type. Stochastic Process Appl, 2002, 98 (2): 289- 315
doi: 10.1016/S0304-4149(01)00145-4 |
7 | Ledoux M . The Concentration of Measure Phenomenon. Providence, RI:American Mathematical Society, 2001, |
8 |
Li Z , Luo J W . Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion. Frontiers of Mathematics in China, 2015, 10 (2): 303- 321
doi: 10.1007/s11464-015-0387-9 |
9 |
Liu W G , Luo J W . Modified Euler approximation of stochastic differential equation driven by Brownian motion and fractional Brownian motion. Communications in Statistics-Theory and Method, 2017, 46 (15): 7427- 7443
doi: 10.1080/03610926.2016.1152487 |
10 |
Ma Y . Transportation inequalities for stochastic differential equations with jumps. Stochastic Process Appl, 2010, 120: 2- 21
doi: 10.1016/j.spa.2009.09.012 |
11 |
Melnikov A , Mishura Y , Shevchenko G . Stochastic viability and comparison theorems for mixed stochastic differential equations. Methodol Comput Appl Probab, 2015, 17: 169- 188
doi: 10.1007/s11009-013-9336-9 |
12 |
Mishura Y , Shevchenko G . Mixed stochastic differential equations with long-range dependence:Existence, uniqueness and convergence of solutions. Computers and Mathematics with Applications, 2012, 64: 3217- 3227
doi: 10.1016/j.camwa.2012.03.061 |
13 | Mishura Y , Shalaiko T , Shevchenko G . Convergence of solutions of mixed stochastic delay differential equations with applications. Applied Mathematics and Computation, 2015, 257 (15): 487- 497 |
14 |
Pal S . Concentration for multidimensional diffusions and their boundary local times. Probab Theory Relat Fields, 2012, 154: 225- 254
doi: 10.1007/s00440-011-0368-1 |
15 |
Piccoli B , Rossi F . Generalized Wasserstein distance and its application to transport equations with source. Arch Rational Mech Anal, 2014, 211: 335- 358
doi: 10.1007/s00205-013-0669-x |
16 |
Saussereau B . Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion. Bernoulli, 2012, 18 (1): 1- 23
doi: 10.3150/10-BEJ324 |
17 |
Wang F Y . Transportation cost inequalities on path spaces over Riemannian manifolds. Illinois J Math, 2002, 46: 1197- 1206
doi: 10.1215/ijm/1258138474 |
18 |
Wang F Y . Probability distance inequalities on Riemannian manifolds and path spaces. J Funct Anal, 2004, 206: 167- 190
doi: 10.1016/S0022-1236(02)00100-3 |
19 |
Wu L . Transportation inequalities for stochastic differential equations of pure jumps. Ann Inst Henri Poincaré Probab Stat, 2010, 46: 465- 479
doi: 10.1214/09-AIHP320 |
20 | Wu L , Zhang Z . Talagrand's T2-transportation inequality w.r.t. a uniform metric for diffusions. Acta Math Appl Sin Engl Ser, 2004, 20: 357- 364 |
21 |
Wu L , Zhang Z . Talagrand's T2-transportation inequality and log-Sobolev inequality for dissipative SPDEs and applications to reaction-diffusion equations. Chinese Ann Math Ser B, 2006, 27: 243- 262
doi: 10.1007/s11401-005-0176-y |
22 |
Young L C . An inequality of the Hölder type connected with Stieltjes integration. Acta Math, 1936, 67: 251- 282
doi: 10.1007/BF02401743 |
23 |
Zäle M . Integration with respect to fractal functions and stochastic calculus. I.. Probab Theory Related Field, 1998, 111: 333- 374
doi: 10.1007/s004400050171 |
24 | Zäle M. On the Link Between Fractional and Stochastic Calculus//Crauel H, Gundlach M. Stochastic Dynamics. New York: Springer, 1999: 305-325 |
[1] | Liang Wu. Hurst Parameter Under Finite Second Moment and Under Heavy Tails [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1072-1082. |
[2] | Liheng Sang,Zhenlong Chen,Xiaozhen Hao. Smoothness for the Renormalized Self-Intersection Local Time of Bifractional Brownian Motion [J]. Acta mathematica scientia,Series A, 2020, 40(3): 796-810. |
[3] | Qikang Ran. SDE Driven by Fractional Brown Motion and Their Coefficients are Locally Linear Growth [J]. Acta mathematica scientia,Series A, 2020, 40(1): 200-211. |
[4] | Zhaoqiang Yang. Pricing European Lookback Option in a Special Kind of Mixed Jump-Diffusion Black-Scholes Model [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1514-1531. |
[5] | Jing Cui,Qiuju Liang,Nana Bi. Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion [J]. Acta mathematica scientia,Series A, 2019, 39(3): 570-581. |
[6] | ZHANG Hua-Yue, CHEN Wan-Hua, QU Li-An. Dynamic Below-Target Semi-Variance Risk Measure in a Fractional |Black-Scholes Market [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1674-1682. |
[7] | Liu Shaoyue; Yang Xiangqun. Optimal Portfolio in a Fractional Black-Scholes Model with Arbitrary Hurst Parameter [J]. Acta mathematica scientia,Series A, 2008, 28(4): 742-746. |
|