Supported by the NSF of Anhui Province(1908085MA05);the Natural Science Research Project of Universities in Anhui Province(KJ2019A0590);the Excellent Talents Fund Program of Higher Education Institutions of Anhui Province(gxyqZD2020022)
Xu W X. On New Convex Set of Constant Width. Chongqing:Southwest University, 2013
2
Meissner E . Über Punktmengen konstanter Breite. Vierteljahresschr Naturforsch Ges Zürich, 1911, 56: 42- 50
3
Blatter C . Über Kurven konstanter Breite. Elem Math, 1981, 36 (5): 105- 115
4
Fujiwara M . Analytic proof of Blaschke's theorem on the curve of constant breadth with minimum area. Proceedings of the Japan Academy, 1927, 3 (6): 307- 309
doi: 10.3792/pia/1195581847
5
Evans M H . A direct proof of a theorem of Blaschke and Lebesgue. The Journal of Geometric Analysis, 2002, 12 (1): 81- 88
doi: 10.1007/BF02930861
6
潘生亮. 切线极坐标的一个应用. 华东师范大学学报(自然科学版), 2003, 1: 13- 16
Pan S L . An application of the polar tangential coordinate. Journal of East China Normal University (Natrual Science Edition), 2003, 1: 13- 16
7
Robert T L , Qudet E . Bodies of constant width in arbitrary dimension. Math Nachr, 2007, 280 (7): 740- 750
doi: 10.1002/mana.200510512
Xu W X , Zhou J Z , Chen F W . On the isosceles trapezoids of constant width. Chinese Science:Mathematics, 2011, 41 (10): 855- 860
doi: 10.3969/j.issn.0253-2778.2011.10.002
9
Schneider R . Convex Bodies:the Brunn-Minkowski Theory (2nd ed) New York: Cambridge University Press, 2014