| 1 | 徐文学.新的常宽凸集.重庆:西南大学, 2013 | | 1 | Xu W X. On New Convex Set of Constant Width. Chongqing:Southwest University, 2013 | | 2 | Meissner E . über Punktmengen konstanter Breite. Vierteljahresschr Naturforsch Ges Zürich, 1911, 56: 42- 50 | | 3 | Blatter C . über Kurven konstanter Breite. Elem Math, 1981, 36 (5): 105- 115 | | 4 | Fujiwara M . Analytic proof of Blaschke's theorem on the curve of constant breadth with minimum area. Proceedings of the Japan Academy, 1927, 3 (6): 307- 309 | | 5 | Evans M H . A direct proof of a theorem of Blaschke and Lebesgue. The Journal of Geometric Analysis, 2002, 12 (1): 81- 88 | | 6 | 潘生亮. 切线极坐标的一个应用. 华东师范大学学报(自然科学版), 2003, 1: 13- 16 | | 6 | Pan S L . An application of the polar tangential coordinate. Journal of East China Normal University (Natrual Science Edition), 2003, 1: 13- 16 | | 7 | Robert T L , Qudet E . Bodies of constant width in arbitrary dimension. Math Nachr, 2007, 280 (7): 740- 750 | | 8 | 徐文学, 周家足, 陈方维. 一类常宽"等腰梯形". 中国科学:数学, 2011, 41 (10): 855- 860 | | 8 | Xu W X , Zhou J Z , Chen F W . On the isosceles trapezoids of constant width. Chinese Science:Mathematics, 2011, 41 (10): 855- 860 | | 9 | Schneider R . Convex Bodies:the Brunn-Minkowski Theory (2nd ed) New York: Cambridge University Press, 2014 |
|