Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1393-1408.
Meiyan Fu1,3,Tiao Lu1,2,*(),Xiangjiang Zhu1
Received:
2019-08-01
Online:
2020-10-26
Published:
2020-11-04
Contact:
Tiao Lu
E-mail:tlu@math.pku.edu.cn
Supported by:
CLC Number:
Meiyan Fu,Tiao Lu,Xiangjiang Zhu. Unified Formulation of Charge-conserving Current Assignment in Electromagnetic Particle-in-Cell Simulation[J].Acta mathematica scientia,Series A, 2020, 40(5): 1393-1408.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
"
V method | E method | U method | |
其中: |
"
V method | E method | U method | |
其中: |
"
V method | E method | U method | |
其中: | |||
"
Form-factor | ||
"
Form-factor | ||||
"
Form-factor(1st order) | |
1 | Eastwood W . The virtual particle electromagnetic particle-mesh method. Computer Physics Communications, 1991, 64 (2): 252- 266 |
2 | Hockney W , Eastwood W . Computer Simulation Using Particles. New York: CRC press, 1988 |
3 | Birdsall K , Langdon A . Plasma Physics via Computer Simulation. New York: CRC press, 2004 |
4 |
Wang Y , Wang J G , Chen Z G , et al. Three-dimensional simple conformal symplectic particle-in-cell methods for simulations of high power microwave devices. Computer Physics Communications, 2016, 205, 1- 12
doi: 10.1016/j.cpc.2016.03.007 |
5 | Goplen B , Ludeking L , Smith D , Warren G . User-configurable MAGIC for electromagnetic PIC calculations. Computer Physics Communications, 1995, 87 (1/2): 54- 86 |
6 | Wang J G , Zhang D H , Liu C L , et al. UNIPIC code for simulations of high power microwave devices. Physics of Plasmas, 2009, 16 (3): 033108 |
7 |
Moon H , Teixeira F , Omelchenko A . Exact charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids:A geometric perspective. Computer Physics Commun, 2015, 194, 43- 53
doi: 10.1016/j.cpc.2015.04.014 |
8 | Verboncoeur P , Langdon A , Gladd N . An object-oriented electromagnetic PIC code. Computer Physics Communications, 1995, 87 (1/2): 199- 211 |
9 |
Na Dong-Yeop , Omelchenko Yuri A , Moon Haksu , et al. Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids:Application to microwave vacuum electronic devices. Journal of Computational Physics, 2017, 346, 295- 317
doi: 10.1016/j.jcp.2017.06.016 |
10 | Gaponov-Grekhov V , Granatstein L . Applications of High-Power Microwaves. New York: Artech House Publishers, 1994 |
11 |
Li X Z , Wang J G , Sun J , et al. Experimental study on a high-power subterahertz source generated by an overmoded surface wave oscillator with fast startup. IEEE Transactions on Electron Devices, 2013, 60 (9): 2931- 2935
doi: 10.1109/TED.2013.2273489 |
12 | Wang J G , Wang G Q , Wang D Y , et al. Experimental study on a high-power subterahertz source generated by an overmoded surface wave oscillator with fast startup. IEEE Trans Elec Devices, 2013, (9): 2931- 2935 |
13 |
Na Dong-Yeop , Teixeira Fernando L . Analysis of multipactor effects by a particle-in-cell algorithm integrated with secondary electron Emission model on irregular grids. IEEE Transactions on Plasma Science, 2019, 47 (2): 1269- 1278
doi: 10.1109/TPS.2019.2892323 |
14 |
Wang J G , Cai L B , Zhu X Q , et al. Numerical simulations of high power microwave dielectric interface breakdown involving outgassing. Physics of Plasmas, 2010, 17 (6): 063503
doi: 10.1063/1.3432715 |
15 | Crouseilles N , Navaro P , Sonnendrücker E . Charge-conserving grid based methods for the Vlasov-Maxwell equations. Comptes Rendus Mécanique, 2014, 342 (10/11): 636- 646 |
16 | Villasenor J , Buneman O . Rigorous charge conservation for local electromagnetic field solvers. Computer Physics Communications, 1992, 69 (2): 306- 316 |
17 | Esirkepov T . Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Computer Physics Communications, 2001, 135 (2): 144- 153 |
18 | Umeda T , Omura Y , Tominaga T , Matsumoto H . A new charge conservation method in electromagnetic particle-in-cell simulations. Computer Physics Communications, 2003, 156 (1): 73- 85 |
19 | Barthelmé R , Parzani C . Numerical charge conservation in particle-in-cell codes. Numerical Methods for Hyperbolic and Kinetic Problems, 2005, 7, 7- 28 |
20 | Yu J Q , Jin X L , Zhou W M , et al. High-order interpolation algorithms for charge conservation in particle-in-cell simulations. Communications in Computational Physics, 2013, 13 (4): 1134- 1150 |
[1] | Conggang Liang,Xiaoxia Yang,Dongyang Shi. Convergence Analysis of Wilson Element for Parabolic Integro-Differential Equation [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1158-1169. |
[2] | Junjun Wang,Xiaoxia Yang. Superconvergence Analysis of an H1-Galerkin Mixed Finite Element Method for Nonlinear Parabolic Equation [J]. Acta mathematica scientia,Series A, 2019, 39(4): 894-908. |
[3] | Yanping Sun,Shaochun Chen. A Nonconforming Locking-Free Triangular Prism Element Analysis for Linear Elasticity Problem [J]. Acta mathematica scientia,Series A, 2019, 39(2): 329-338. |
[4] | Zhang Houchao, Wang Junjun, Shi Dongyang. A Type of New Lower Order Nonconforming Mixed Finite Elements Methods for the Extended Fisher-Kolmogorov Equation [J]. Acta mathematica scientia,Series A, 2018, 38(3): 571-587. |
[5] | Fang Zhichao, Li Hong, Luo Zhendong, Liu Yang. Mixed Finite Volume Element Method and Numerical Simulation for Sine-Gordon Equation [J]. Acta mathematica scientia,Series A, 2018, 38(2): 395-416. |
[6] | Zhang Houchao, Shi Dongyang. Superconvergence Analysis of a Lower Order Mixed Finite Element Method for Nonlinear Fourth-Order Hyperbolic Equation [J]. Acta mathematica scientia,Series A, 2016, 36(4): 656-671. |
|