Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1362-1380.
Previous Articles Next Articles
Received:
2019-07-10
Online:
2020-10-26
Published:
2020-11-04
Contact:
Pengzhan Huang
E-mail:lywinxjst@yeah.net;hpzh007@yahoo.com
Supported by:
CLC Number:
Wei Li,Pengzhan Huang. A Viscosity-Splitting Finite Element Method for the Fluid-Fluid Interaction Problem[J].Acta mathematica scientia,Series A, 2020, 40(5): 1362-1380.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Aggul M , Connors J M , Erkmen D , Labovsky A E . A defect-deferred correction method for fluid-fluid interaction. SIAM J Numer Anal, 2018, 56 (4): 2484- 2512
doi: 10.1137/17M1148219 |
2 |
Arnold D N , Brezzi F , Fortin M . A stable finite element for the Stokes equations. Calcolo, 1984, 21 (4): 337- 344
doi: 10.1007/BF02576171 |
3 | Bernardi C , Chacon T , Lewandowski R , Murat F . A model for two coupled turbulent fluids Ⅱ:Numerical analysis of a spectral discretization. SIAM J Numer Anal, 2003, 40 (6): 2368- 2394 |
4 | Bernardi C , Rebello T C , Mármol M G , et al. A model for two coupled turbulent fluids Ⅲ:Numerical approximation by finite elements. Numer Math, 2004, 98 (1): 33- 66 |
5 |
Blasco J , Codina R . Error estimates for a viscosity-splitting finite element method for the incompressible Navier-Stokes equations. Appl Numer Math, 2004, 51, 1- 17
doi: 10.1016/j.apnum.2004.02.004 |
6 |
Blasco J , Codina R , Huerta A . A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm. Int J Numer Methods Fluids, 1998, 28 (10): 1391- 1419
doi: 10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO;2-5 |
7 | Bresch D , Koko J . Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids. Int J Appl Math Comput Sci, 2006, 16 (4): 419- 429 |
8 |
Chorin A J . Numerical solution of the Navier-Stokes equations. Math Comput, 1968, 22, 745- 762
doi: 10.1090/S0025-5718-1968-0242392-2 |
9 | Connors J M . An ensemble-based conventional turbulence model for fluid-fluid interaction. Inter J Numer Anal Model, 2018, 15 (4): 492- 519 |
10 |
Connors J M , Ganis B . Stability of algorithms for a two domain natural convection problem and observed model uncertainty. Comput Geosci, 2011, 15 (3): 509- 527
doi: 10.1007/s10596-010-9219-x |
11 |
Connors J M , Howell J S . A fluid-fluid interaction method using decoupled subproblems and differing time steps. Numer Meth Part Differ Equ, 2012, 28 (4): 1283- 1308
doi: 10.1002/num.20681 |
12 |
Connors J M , Howell J S , Layton W J . Partitioned time stepping for a parabolic two domain problem. SIAM J Numer Anal, 2009, 47 (5): 3526- 3549
doi: 10.1137/080740891 |
13 |
Connors J M , Howell J S , Layton W J . Decoupled time stepping methods for fluid-fluid interaction. SIAM J Numer Anal, 2012, 50 (3): 1297- 1319
doi: 10.1137/090773362 |
14 |
Fernández M A , Gerbeau J , Smaldone S . Explicit coupling schemes for a fluid-fluid interaction problem arising in hemodynamics. SIAM J Sci Comput, 2014, 36 (6): A2557- A2583
doi: 10.1137/130948653 |
15 |
Girault V , Rivíere B , Wheeler M F . A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations. ESAIM:Math Model Numer Anal, 2005, 39 (6): 1115- 1147
doi: 10.1051/m2an:2005048 |
16 |
Guermond J L , Salgado A . Error analysis of a fractional time-stepping technique for incompressible flows with variable density. SIAM J Numer Anal, 2011, 49 (3): 917- 944
doi: 10.1137/090768758 |
17 | Guillén-González F , Redondo-Neble M V . New error estimates for a viscosity splitting scheme in time for the three-dimensional Navier-Stokes equations. IMA J Numer Anal, 2011, 31 (2): 556- 579 |
18 | Guillén-González F , Redondo-Neble M V . Spatial error estimates for a finite element viscosity-splitting scheme for the Navier-Stokes equations. Inter J Numer Anal Model, 2013, 10 (4): 826- 844 |
19 |
Guillén-González F , Redondo-Neble M V . Convergence and error estimates of viscosity-splitting finite-element schemes for the primitive equations. Appl Numer Math, 2017, 111, 219- 245
doi: 10.1016/j.apnum.2016.09.011 |
20 |
Heywood J , Rannacher R . Finite element approximation of the nonstationary Navier-Stokes equations, Ⅳ:Error analysis for second order time discretizations. SIAM J Numer Anal, 1990, 27 (2): 353- 384
doi: 10.1137/0727022 |
21 |
Li J , Huang P , Zhang C , Guo G . A linear, decoupled fractional time-stepping method for the nonlinear fluid-fluid interaction. Numer Methods Part Differ Equa, 2019, 35, 1873- 1889
doi: 10.1002/num.22382 |
22 | Li J , Huang P , Su J , Chen Z . A linear, stabilized, non-spatial iterative, partitioned time stepping method for the nonlinear Navier-Stokes/Navier-Stokes interaction model. Bound Value Probl, 2019 |
23 | Lions J L , Temam R , Wang S . Models for the coupled atmosphere and ocean (CAO Ⅰ). Comput Mech Adv, 1993, 1, 5- 54 |
24 | Lions J L , Temam R , Wang S . Numerical analysis of the coupled atmosphere-ocean models (CAO Ⅱ). Comput Mech Adv, 1993, 1, 55- 119 |
25 | Lions J L , Temam R , Wang S . Mathematical theory for the coupled atmosphere-ocean models (CAO Ⅲ). J Math Pures Appl, 1995, 74, 105- 163 |
26 |
Qian L Z , Chen J R , Feng X L . Local projection stabilized and characteristic decoupled scheme for the fluid-fluid interaction problems. Numer Meth Part Differ Equa, 2017, 33 (3): 704- 723
doi: 10.1002/num.22116 |
27 |
Quarteroni A , Saleri F , Veneziani A . Factorization methods for the numerical approximation of Navier-Stokes equations. Comput Methods Appl Mech Eng, 2000, 188 (1-3): 505- 526
doi: 10.1016/S0045-7825(99)00192-9 |
28 | Saleri F , Veneziani A . Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations. SIAM J Numer Anal, 2005, 43 (1): 174- 194 |
29 | Strikwerda J C , Young S L . The accuracy of the fractional step method. SIAM J Numer Anal, 1999, 37 (1): 37- 47 |
30 | Temam R. Navier-Stokes Equations, Theory and Numerical Analysis. Amsterdam: North Holland, 1984 |
31 |
Zhang Y H , Hou Y R , Shan L . Stability and convergence analysis of a decoupled algorithm for a fluid-fluid interaction problem. SIAM J Numer Anal, 2016, 54 (5): 2833- 2867
doi: 10.1137/15M1047891 |
32 |
Zhang Y H , Hou Y R , Shan L . Error estimates of a decoupled algorithm for a fluid-fluid interaction problem. J Comput Appl Math, 2018, 333, 266- 291
doi: 10.1016/j.cam.2017.10.039 |
33 |
Zhang T , Pedro D , Yuan J Y . A large time stepping viscosity-splitting finite element method for the viscoelastic flow problem. Adv Comput Math, 2015, 41 (1): 149- 190
doi: 10.1007/s10444-014-9353-4 |
34 |
Zhang T , Qian Y X . The time viscosity-splitting method for the Boussinesq problem. J Math Anal Appl, 2017, 445 (1): 186- 211
doi: 10.1016/j.jmaa.2016.07.023 |
35 |
Zhang T , Qian Y X , Yuan J Y . The fully discrete fractional-step method for the Oldroyd model. Appl Numer Math, 2018, 129, 83- 103
doi: 10.1016/j.apnum.2018.03.003 |
[1] | Zhihong Zhao,Yingzhen Lin. Reproducing Kernel Method for Piecewise Smooth Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1333-1340. |
[2] | Juan Wang,Jie Zhao. Homogenization of Higher-Order Equations with Mixed Boundary Condition [J]. Acta mathematica scientia,Series A, 2020, 40(4): 925-933. |
[3] | Liu Yang,Zuicha Deng. An Inverse Initial Value Problem for Degenerate Parabolic Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 891-903. |
[4] | Yonghui Zhou. Global Stability of the Nonmonotone Critical Traveling Waves for Reaction Diffusion Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 983-992. |
[5] | Jian Liu,Zhixin Zhang,Wei Jiang. Global Mittag-Leffler Stability of Fractional Order Nonlinear Impulsive Differential Systems with Time Delay [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1053-1060. |
[6] | Lixin Feng,Xiaoxu Yang. Spectral Regularization Method for Volterra Integral Equation of the First Kind with Noise Data [J]. Acta mathematica scientia,Series A, 2020, 40(3): 650-661. |
[7] | Xingshou Huang,Ricai Luo,Wusheng Wang. Stability Analysis for a Class Neural Network with Proportional Delay Based on the Gronwall Integral Inequality [J]. Acta mathematica scientia,Series A, 2020, 40(3): 824-832. |
[8] | Guodong Ma. A Strongly Convergent Generalized Gradient Projection Method for Minimax Optimization with General Constraints [J]. Acta mathematica scientia,Series A, 2020, 40(3): 641-649. |
[9] | Dehua Qiu,Ju Yang,Yanchun Yi. Convergence in Lr for Lp-Mixingale Arrays [J]. Acta mathematica scientia,Series A, 2020, 40(3): 611-618. |
[10] | Chun Wang,Tianzhou Xu. Hyers-Ulam-Rassias Stability of a Mixed Type Cubic-Quartic Functional Equation in 2-Banach Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(2): 352-368. |
[11] | Gang Cai. Viscosity Implicit Algorithms for a Variational Inequality Problem and Fixed Point Problem in Hilbert Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(2): 395-407. |
[12] | Zerong He,Zhiqiang Zhang,Zheyong Qiu. Numerical Method of a Nonlinear Hierarchical Age-Structured Population Model [J]. Acta mathematica scientia,Series A, 2020, 40(2): 515-526. |
[13] | Menglan Liao,Bin Guo. Asymptotic Stability of Weak Solutions to Wave Equation with Variable Exponents and Strong Damping Term [J]. Acta mathematica scientia,Series A, 2020, 40(1): 146-155. |
[14] | Yuxian Hu. A Double Projection Method for Solving Variational Inequalities [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1492-1498. |
[15] | Jianhua Huang,Zaiyun Zhang,Yong Chen. The Moderate Deviation Principle for Stochastic 3D LANS-α Model Driven by Multiplicative Lévy Noise [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1532-1544. |
|