Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1186-1191.
Previous Articles Next Articles
Received:
2018-11-14
Online:
2020-10-26
Published:
2020-11-04
Contact:
Gui Bao
E-mail:baoguigui@163.com;julysunqian@gmail.com
CLC Number:
Gui Bao,Qian Sun. Existence and Multiplicity of Sign-Changing Solutions for a Bi-Harmonic Equation with Sublinear Nonlinearity[J].Acta mathematica scientia,Series A, 2020, 40(5): 1186-1191.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
King B B , Stein O , Winkler M . A fourth-order parabolic equation modeling epitaxial thin film growth. Journal of Mathematical Analysis and Applications, 2003, 286 (2): 459- 490
doi: 10.1016/S0022-247X(03)00474-8 |
2 | Kajikiya R . A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. Journal of Functional Analysis, 2005, 225 (2): 352- 370 |
3 | Li D , Qiao Z , Tang T . Gradient bounds for a thin film epitaxy equation. Journal of Differential Equations, 2017, 262 (3): 1720- 1746 |
4 | Li Q , Gao W , Han Y . Global existence blow up and extinction for a class of thin-film equation. Nonlinear Analysis:Theory, Methods & Applications, 2016, 147, 96- 109 |
5 |
Qu C , Zhou W . Blow-up and extinction for a thin-film equation with initial-boundary value conditions. Journal of Mathematical Analysis and Applications, 2016, 436 (2): 796- 809
doi: 10.1016/j.jmaa.2015.11.075 |
6 |
Sun F , Liu L , Wu Y . Infinitely many sign-changing solutions for a class of biharmonic equation with p-Laplacian and Neumann boundary condition. Applied Mathematics Letters, 2017, 73, 128- 135
doi: 10.1016/j.aml.2017.05.001 |
7 | Sun J , Chu J , Wu T . Existence and multiplicity of nontrivial solutions for some biharmonic equations with p-Laplacian. Journal of Differential Equations, 2017, 262 (2): 945- 977 |
8 |
Winkler M . Global solutions in higher dimensions to a fourth-order parabolic equation modeling epitaxial thin-film growth. Zeitschrift für angewandte Mathematik und Physik, 2011, 62 (4): 575- 608
doi: 10.1007/s00033-011-0128-1 |
9 | Rabinowitz P H . Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence, RI:Amer Math Soc, 1986 |
10 | Weth T . Nodal solutions to superlinear biharmonic equations via decomposition in dual cones. Topological Methods in Nonlinear Analysis, 2006, 28 (1): 33- 52 |
11 |
Xu G , Zhang J . Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity. Journal of Mathematical Analysis and Applications, 2003, 281 (2): 633- 640
doi: 10.1016/S0022-247X(03)00170-7 |
12 | Zhang J . Existence results for some fourth-order nonlinear elliptic problems. Nonlinear Analysis, 2001, 45 (1): 29- 36 |
13 | Zhang J , Li S . Multiple nontrivial solutions for some fourth-order semilinear elliptic problems. Nonlinear Analysis:Theory, Methods & Applications, 2005, 60 (2): 221- 230 |
14 |
Zhou J , Wu X . Sign-changing solutions for some fourth-order nonlinear elliptic problems. Journal of Mathematical Analysis and Applications, 2008, 342 (1): 542- 558
doi: 10.1016/j.jmaa.2007.12.020 |
15 | Zou W, Schechter M. Critical Point Theory and Its Applications. New York:Springer, 2006 |