Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1132-1141.
Previous Articles Next Articles
Fang Chen1,2,Zeyu Sun1,Minru Chen3,Zhaowen Yan1,*()
Received:
2019-06-12
Online:
2020-10-26
Published:
2020-11-04
Contact:
Zhaowen Yan
E-mail:yanzw@imu.edu.cn
Supported by:
CLC Number:
Fang Chen,Zeyu Sun,Minru Chen,Zhaowen Yan. The Novel (2+1)-Dimensional Supersymmetric Integrable Equations[J].Acta mathematica scientia,Series A, 2020, 40(5): 1132-1141.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Alvarez-Gaumé L , Itoyama H , Mañes J L , Zadra A . Superloop equations and two-dimensional supergravity. Int J Mod Phys A, 1992, 7, 5337- 5367
doi: 10.1142/S0217751X92002441 |
2 | Wulff L . Integrability of the superstring in AdS3×S2×S2×T3. J Phys A, 2017, 50, 23L |
3 |
Grabner D , Gromov N , Kazakov V , Korchemsky G . Strongly Gamma-deformed N=4 supersymmetric Yang-Mills theory as an integrable conformal field theory. Phys Rev Lett, 2018, 120, 111601
doi: 10.1103/PhysRevLett.120.111601 |
4 | Hosomichi K , Lee S , Okuda T . Supersymmetric vortex defects in two dimensions. J High Energy Phys, 2018, 01, 033- 098 |
5 | Di Vecchia P , Ferrara S . Classical solutions in two-dimensional supersymmetric field theories. Nucl Phys B, 1997, 130, 93- 104 |
6 |
Mathieu P . Supersymmetric extension of the korteweg-de vries. J Math Phys, 1988, 29, 2499- 2506
doi: 10.1063/1.528090 |
7 |
Bellucci S , Ivanov E , Krivonos S , Pichugin A . N=2 super boussinesq hierarchy:Lax pairs and conservation laws. Phys Lett B, 1993, 312, 463- 470
doi: 10.1016/0370-2693(93)90983-O |
8 |
Manin Yu , Radul A . A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Commun Math Phys, 1985, 98, 65- 77
doi: 10.1007/BF01211044 |
9 | Kac V, Medina E. On the super-kp hierachy. Lett Math Phys, 1996, 37: 435-448 |
10 |
LeClair A . Supersymmetric KP hierarchy:free field construction. Nucl Phys B, 1989, 314, 425- 438
doi: 10.1016/0550-3213(89)90160-0 |
11 |
Popowicz Z . The extended supersymmetrization of the nonlinear schrödinger equation. Phys Lett A, 1994, 194, 375- 379
doi: 10.1016/0375-9601(94)91296-3 |
12 |
Mao H , Liu Q P . Bäcklund-Darbous transformations and discretizations of N=2 a=-2 supersymmetric KdV equation. Phys Lett A, 2018, 382, 253- 258
doi: 10.1016/j.physleta.2017.11.034 |
13 | Aguirre A R , Retore A L , Gomes J F , et al. Defects in the supersymmetric MKdV hierarchy via Bäcklund transformations. J High Energy Phys, 2018, 01, 018 |
14 |
Chaichian M , Kulish P P . On the method of inverse scattering problem and Bäcklund transformation for supersymmetric equations. Phys Lett B, 1978, 78, 413- 416
doi: 10.1016/0370-2693(78)90473-2 |
15 |
Mathieu P . The painlevé property for fermionic extensions of the Korteweg-de Vries equation. Phys Lett A, 1988, 128, 169- 171
doi: 10.1016/0375-9601(88)90903-6 |
16 |
Ibort A , Martinez Alonso L , Medina Reus E . Explicit solutions of supersymmetric KP hierarchies:supersolitinos. J Math Phys, 1996, 37, 6157- 6172
doi: 10.1063/1.531770 |
17 |
Liu Q P . Darbous transformations for supersymmetric Korteweg-de Vries equations. Lett Math Phys, 1995, 35, 115- 122
doi: 10.1007/BF00750761 |
18 |
McArthur I N , Yung C M . Hirota bilinear from for the super-KdV hierarchy. Mod Phys Lett A, 1993, 8, 1739- 1745
doi: 10.1142/S0217732393001471 |
19 |
Wahlquist H D , Estabrook F B . Prolongation structures of nonlinear evolution equations. J Math Phys, 1975, 16, 1- 7
doi: 10.1063/1.522396 |
20 |
Saha M , Roy Chowdhury A . Supersymmetric integrable systems in (2+1) dimensional and their Bäcklund transformation. Int J Theor Phys, 1999, 38, 2037- 2047
doi: 10.1023/A:1026605819631 |
21 |
Yan Z W , Chen M R , Wu K , Zhao W Z . (2+1)-dimensional integrable Heisenberg supermagnet model. J Phys Soc Jpn, 2012, 81, 094006
doi: 10.1143/JPSJ.81.094006 |
22 |
Cheng J P , Tian Y , Yan Z W , He J S . The generalized additional symmetries of the two-Toda lattice hierarchy. J Math Phys, 2013, 54, 023513
doi: 10.1063/1.4792479 |
23 |
Yan Z W , Li M L , Wu K , Zhao W Z . Fermionic covariant prolongation structure theory for multidimensional super nonlinear evolution equation. J Math Phys, 2013, 54, 033506
doi: 10.1063/1.4795405 |
24 |
Hu X B . An approach to generate superextensions of integrable systems. J Phys A, 1997, 30, 619- 632
doi: 10.1088/0305-4470/30/2/023 |
25 |
Suh U R . Classical affine w-superalgebras via generalized Drinfeld-Sokolov reductions and related integrable systems. Commun Math Phys, 2018, 358, 199- 236
doi: 10.1007/s00220-017-3014-7 |
26 | Berkovits N , Vafa C , Witten E . Conformal field theory of AdS background with Ramond-Radmond flux. J High Energy Phys, 1999, 03, 018 |
27 |
Gurarie V . Logarithmic operators in conformal field theory. Nucl Phys B, 1993, 410, 535- 549
doi: 10.1016/0550-3213(93)90528-W |
28 |
Guruswamy S , LeClair A , Ludwig A W W . gl(N|N) super-current algebras for disordered Dirac fermions in two dimensions. Nucl Phys B, 2000, 583, 475- 512
doi: 10.1016/S0550-3213(00)00245-5 |
29 |
Yin Z , Yu L , Li M L . On a supersymmetric nonlinear integrable equation in (2+1) dimensions. J Nonlin Math Phys, 2015, 22, 204- 209
doi: 10.1080/14029251.2015.1023581 |
30 |
Yan Z W , Chen F T , Liu T R , Han J M . (2+1)-dimensional supersymmetric integrable equations. Int J Geom Methods M, 2017, 14, 1750013
doi: 10.1142/S021988781750013X |
[1] | Dong Deng,Yan Li. Traveling Waves in a Nonlocal Dispersal SIR Epidemic Model with Treatment [J]. Acta mathematica scientia,Series A, 2020, 40(1): 72-102. |
[2] | Menglan Liao,Bin Guo. Asymptotic Stability of Weak Solutions to Wave Equation with Variable Exponents and Strong Damping Term [J]. Acta mathematica scientia,Series A, 2020, 40(1): 146-155. |
[3] | Changxu Shao,Shutang Liu. Fractal Feature and Control of Three-Species Predator-Prey Model [J]. Acta mathematica scientia,Series A, 2019, 39(4): 951-962. |
[4] | Huaxiong Chen,Yanyan Wang,Mingkang Ni. The Contrast Structure for the Singularly Perturbed Problem with Slow-Fast Layers and Discontinuous Righthand Side [J]. Acta mathematica scientia,Series A, 2019, 39(4): 865-874. |
[5] | Runxin Li,Hui Huang,Zhenhong Shang,Yu Cao,Hongbin Wang,Jing Zhang. Lagrange-Like Multiplier Rules for Weak Approximate Pareto Solutions of Multiobjective Constrained Vector Optimization Problems [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1076-1094. |
[6] | Di Yanmei, Li Chunxia, Shen Shoufeng, Ma Wenxiu. Multicomponent Perturbed AKNS Soliton Hierarchy Associated with the Lie Algebra sl(m + 1, R) [J]. Acta mathematica scientia,Series A, 2018, 38(1): 24-33. |
[7] | Yin Chun, Zhou Shiwei, Wu Shanshan, Cheng Yuhua, Wei Xiuling, Wang Wei. New Unequal Delay Partitioning Methods to Stability Analysis for Neural Networks with Discrete and Distributed Delays [J]. Acta mathematica scientia,Series A, 2017, 37(2): 374-389. |
[8] | Liu Jingxin, Wu Hongxia, Zeng Yunbo. On the Ingegrable Coupled Generalization of Dispersionless BKP Hierarchy and Its Solutions [J]. Acta mathematica scientia,Series A, 2017, 37(2): 313-325. |
[9] | Wang Junjie, Wang Liantang. Multi-Symplectic Fourier Pseudospectral Method for a DGH Equation [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1092-1102. |
[10] | Yu Jing, Han Jingwei, Wang Lihong, He Jingsong. Determinant Representation of Dark N-Soliton Solution for the Defocusing Modified Korteweg-de Vries Equation [J]. Acta mathematica scientia,Series A, 2016, 36(1): 14-26. |
[11] | Liang Hong, Rao Shijun. Application of the Difference Theorem to Calculating Second Order Derivatives of Discrete Data [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1207-1219. |
[12] | Zhang Deyue, Lu Linyan, Sun Wei. An Integral Equation Method for Two-Dimensional Scattering by a Chiral Curved Layer [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1071-1079. |
[13] | Li Yan, Zhang Xiaofei, Yi Ming, Liu Yanyan. Link Prediction for the Gene Regulatory Network [J]. Acta mathematica scientia,Series A, 2015, 35(5): 1018-1024. |
[14] | Abdujelil Abdurahman, Jiang Haijun, Teng Zhidong. Exponential Synchronization for Impulsive Cohen-Grossberg Neural Networks with Mixed Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2015, 35(3): 545-557. |
[15] | Shen Shoufeng, Yu Shuimeng, Li Chunxia, Jin Yongyang. Darboux Transformation for A Generalized Self-Dual Yang-Mills Equation in 2n Dimensions [J]. Acta mathematica scientia,Series A, 2015, 35(3): 478-486. |
|