Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (3): 589-596.
Previous Articles Next Articles
Received:
2019-05-24
Online:
2020-06-26
Published:
2020-07-15
Contact:
Wei Zhang
E-mail:zwfylhappy@126.com;yzlee@bjut.edu.cn
Supported by:
CLC Number:
Wei Zhang,Yunzhang Li. Disjointness of Generalized Frames[J].Acta mathematica scientia,Series A, 2020, 40(3): 589-596.
1 |
Duffin R J , Schaeffer A C . A class of nonharmonic Fourier series. Trans Amer Math Soc, 1952, 72, 341- 366
doi: 10.1090/S0002-9947-1952-0047179-6 |
2 |
Daubechies I , Grossmann A , Meyer Y . Painless nonorthogonal expansions. J Math Phy, 1986, 27, 1271- 1283
doi: 10.1063/1.527388 |
3 |
Chan R H , Riemenschneider S D , Shen L , et al. Tight frame:An efficient way for high-resolution image reconstruction. Appl Compute Harmon Anal, 2004, 17, 91- 115
doi: 10.1016/j.acha.2004.02.003 |
4 |
Strohmer T . Approximation of dual Gabor frames, window decay, and wireless communication. Appl Compute Harmon Anal, 2001, 11, 243- 262
doi: 10.1006/acha.2001.0357 |
5 |
Candès E J . Harmonic analysis of neural networks. Appl Compute Harmon Anal, 1999, 6, 197- 218
doi: 10.1006/acha.1998.0248 |
6 |
Eldar Y , Forney Jr G D . Optimal tight frames and quantum measurement. IEEE Trans Inform Theory, 2002, 48, 599- 610
doi: 10.1109/18.985949 |
7 | Christensen O . An Introduction to Frames and Riesz Bases. Boston: Birkhäuser, 2003 |
8 |
Guo X X . Characterizations of disjointness of g-frames and constructions of g-frames in Hilbert spaces. Complex Anal Oper Theory, 2014, 8, 1547- 1563
doi: 10.1007/s11785-014-0364-4 |
9 |
Casazza P G . The art of frame theory. Taiwanese J Math, 2000, 4, 129- 201
doi: 10.11650/twjm/1500407227 |
10 | Zhang W . Dual and aroximately dual Hilbert-Schmidt frames in Hilbert spaces. Results in Mathematics, 2018, 73 (4): 1- 20 |
11 |
Casazza P G , Kutyniok G , Li S . Fusion frames and distributed processing. Appl Comput Harmon Anal, 2008, 25, 114- 132
doi: 10.1016/j.acha.2007.10.001 |
12 |
Fornasier M . Quasi-orthogonal decompositions of structured frames. J Math Anal Appl, 2004, 289, 180- 199
doi: 10.1016/j.jmaa.2003.09.041 |
13 |
Li S , Ogawa H . Pseudo-frames for subspaces with applications. J Fourier Anal Appl, 2004, 10, 409- 431
doi: 10.1007/s00041-004-3039-0 |
14 |
Sun W C . G-frames and g-Riesz bases. J Math Anal Appl, 2006, 322, 437- 452
doi: 10.1016/j.jmaa.2005.09.039 |
15 | Han D , Larson D . Frames, bases and group representations. Mem Amer Math Soc, 2000, 697, 94- 147 |
16 |
Sun W C . Stability of g-frames. J Math Anal Appl, 2007, 326, 858- 868
doi: 10.1016/j.jmaa.2006.03.043 |
17 | Najati A , Faroughi M H , Rahimi A . G-frames and stability of g-frames in Hilbert spaces. Methods Funct Anal Topology, 2008, 14, 271- 286 |
[1] | Han Yaoyao, Zhao Kai. Boundedness of Marcinkiewicz Integral and Its Commutator on Non-Homogeneous Metric Measure Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(3): 597-610. |
[2] | Li Hongguang, Zhang Pengfei. Spectral Property of Some Self-Affine Measures with N-Element Digits on Rn [J]. Acta mathematica scientia,Series A, 2020, 40(3): 667-675. |
[3] | Aiwen Sun,Meng Qu,Min Wang. A Quantitative Weighted Estimate for Bilinear Fourier Multiplier Operators [J]. Acta mathematica scientia,Series A, 2019, 39(2): 253-263. |
[4] | Xukui Shao,Shuangping Tao. Boundedness of Marcinkiewicz Integrals and Commutators with Variable Kernel on Morrey Spaces with Variable Exponents [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1067-1075. |
[5] | Wang Liwei, Shu Lisheng. Boundedness of the Intrinsic Square Function on Variable Exponent Herz and Herz-Hardy Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(4): 716-727. |
[6] | Fang Jingxuan, Zhao Jiman. Variable Homogeneous Besov and Triebel-Lizorkin Spaces on Stratified Groups [J]. Acta mathematica scientia,Series A, 2018, 38(1): 34-45. |
[7] | Wu Ruimin, Jiang Yinsheng, Wang Lihong, Gao Jinling. Weighted Estimates for Parametric Marcinkiewicz Integrals and Its Commutators [J]. Acta mathematica scientia,Series A, 2017, 37(1): 26-37. |
[8] | Huang Wenli, Tao Xiangxing. Weighted Estimates on the Neumann Problem for L2 for Schrödinger Equations in Lipschitz Domains [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1165-1185. |
[9] | Chen Dongxiang, Chen Xuemei. Lp Boundedness for Some Commutators Related to Schrödinger Operator [J]. Acta mathematica scientia,Series A, 2016, 36(5): 832-847. |
[10] | Xu Meiyu, Lu Dayong. Frame Properties of Wave Packet Systems in Sobolev Spaces Hs(Rd) [J]. Acta mathematica scientia,Series A, 2016, 36(5): 848-860. |
[11] | Chen Dongxiang, Zhou Wenjuan, Fang Yuda. The Boundedness of the Commutator of Riesz Potential Associated with Schrödinger Operators [J]. Acta mathematica scientia,Series A, 2016, 36(1): 117-129. |
[12] | Wang Songbai, Pan Jibing, Jiang Yinsheng. Necessary and Sufficient Conditions for Boundedness of Commutators of Multilinear Fractional Integral Operators [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1106-1114. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 105
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|