Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (2): 379-394.
Previous Articles Next Articles
Yanan Zhang,Shuo Yan,Yuxia Tong*()
Received:
2018-12-28
Online:
2020-04-26
Published:
2020-05-21
Contact:
Yuxia Tong
E-mail:tongyuxia@126.com
Supported by:
CLC Number:
Yanan Zhang,Shuo Yan,Yuxia Tong. Gradient Estimates for Weak Solutions to Non-Homogeneous A-Harmonic Equations Under Natural Growth[J].Acta mathematica scientia,Series A, 2020, 40(2): 379-394.
1 | DiBenedetto E , Manfredi J . On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. American Journal of Mathematics, 1993, 115 (5): 1107- 1134 |
2 | Iwaniec T . Projections onto gradient fields and Lp-estimates for degenerated elliptic operators. Studia Mathematica, 1983, 75 (3): 293- 312 |
3 | Acerbi E , Mingione G . Gradient estimates for the p(x)-Laplacean system. Journal für die reine und angewandte Mathmatik, 2005, 584, 117- 148 |
4 | Byun S S , Wang L H . Quasilinear elliptic equations with BMO coefficients in Lipschitz domains. Transactions of the American Mathematical Society, 2007, 359 (12): 5899- 5913 |
5 | Kinnunen J , Zhou S L . A local estimate for nonlinear equations with discontinuous coefficients. Commuications in Partial Differential Equations, 1999, 24 (11/12): 2043- 2068 |
6 | Byun S S , Wang L H . Lp-estimates for general nonlinear elliptic equations. Indiana University Mathematics Journal, 2007, 56 (6): 3193- 3221 |
7 | Jia H , Li D S , Wang L H . Regularity in Orlicz spaces for the Poisson equation. Manuscripta Mathematica, 2007, 122 (3): 265- 275 |
8 | Yao F P. Gradient estimates for weak solutions of A-harmonic equations. Journal of Inequalities and Applications, 2010, Article ID: 685046. DOI: 10.1155/2010/685046 |
9 | Yao F P . Gradient estimates for parabolic A-harmonic equations. Nonlinear Analysis, 2011, 74, 1200- 1211 |
10 | 李惠珍,郑神州.非散度型线性椭圆方程强解的Hessian估计[D].北京:北京交通大学, 2017 |
Li H Z, Zheng S Z. Hessian Estimates to Strong Solutions for Nondivergence Linear Elliptic Equations[D]. Beijing: Beijing Jiaotong University, 2017 | |
11 | Liang S , Zheng S Z . Gradient estimate in Orlicz spaces for elliptic obstracle problems with partially BMO nonlinearities. Electronic Journal of Differential Equations, 2018, 58, 1- 15 |
12 | Zheng S Z , Zheng X L , Feng Z S . Regularity for a class of degenerate elliptic equations with discontinuous coefficients under natural growth. Journal of Mathematical Analysis and Applications, 2008, 346 (2): 359- 373 |
13 | 周树清, 胡振华, 彭冬云. 一类A -调和方程的障碍问题的很弱解的全局正则性. 数学物理学报, 2017, 37A (4): 706- 713 |
Zhou S Q , Hu Z H , Peng D Y . Global regularity for very weak solutions to obstacle promlems corresponding to a class of A-harmonic equations. Acta Mathematica Scientia, 2017, 37A (4): 706- 713 | |
14 | 高红亚,褚玉明.拟正则映射与A -调和方程.北京:科学出版社, 2013 |
Gao H Y, Chu Y M. Quasiregular Mappings and A-Harmonic Equation. Beijing: Science Press, 2013 | |
15 | Zhang J J , Zheng S Z . Weighted Lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients. Communications on Pure and Applied Analysis, 2017, 16 (3): 899- 914 |
16 | 佟玉霞, 郑神州, 程林娜. 弱A -调和张量的奇点可去性. 数学物理学报, 2017, 37A (6): 1001- 1011 |
Tong Y X , Zheng S Z , Cheng L N . Removable singularities of weakly A-harmonic tensors. Acta Mathematica Scientia, 2017, 37A (6): 1001- 1011 | |
17 | Byun S S , Lee M . Weighted estimates for nondivergence parabolic equations in Orlicz spaces. Journal of Functional Analysis, 2015, 269 (8): 2530- 2563 |
18 | Byun S S , Yao F P , Zhou S L . Gradient estimates in Orlicz space for nonlinear elliptic equations. Journal of Functional Analysis, 2008, 255 (8): 1851- 1873 |
19 | Wang L H , Yao F P , Zhou S L , Jia H L . Optimal regularity for the Poisson equation. Proceedings of the American Mathematical Society, 2009, 137 (6): 2037- 2047 |
20 | Giaquinta M. Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton: Princeton University Press, 1983 |
21 | 高红亚, 贾苗苗. 障碍问题解的局部正则性和局部有界性. 数学物理学报, 2017, 37A (4): 706- 713 |
Gao H Y , Jia M M . Local regularity and local boundedness for solutions to obstacle problems. Acta Mathematica Scientia, 2017, 37A (4): 706- 713 | |
22 | Lieberman G M . The natural generalization of the natural conditions of Ladyzhenskaya and Urall'tseva for elliptic equations. Communications in Partial Differential Equations, 1991, 16 (2/3): 311- 361 |
23 | Yao F P , Sun Y , Zhou S L . Gradient estimates in Orlicz spaces for quasilinear elliptic equation. Nonlinear Analysis, 2008, 69 (8): 2553- 2565 |
24 | Tolksdorf P . Regularity for more general class of quasilinear elliptic equations. Journal of Differential Equations, 1984, 51 (1): 126- 150 |
25 | Byun S S , Wang L H , Zhou S L . Nonlinear elliptic equations with small BMO coefficients in Reifenberg domains. Journal of Functional Analysis, 2007, 250 (1): 167- 196 |
[1] | Limin Zhang,Haiyan Xu,Chunhua Jin. Global Existence and Stability to a Prey-Taxis Model with Porous Medium Diffusion and Indirect Signal Production [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1381-1404. |
[2] | Kai Li,Han Yang,Fan Wang. Study on Weak Solution and Strong Solution of Incompressible MHD Equations with Damping in Three-Dimensional Systems [J]. Acta mathematica scientia,Series A, 2019, 39(3): 518-528. |
[3] | Zhang Shengui. Infinitely Many Solutions for a Bi-Nonlocal Problem Involving p(x)-Laplacian-Like Operator [J]. Acta mathematica scientia,Series A, 2018, 38(3): 514-526. |
[4] | Xing Chao, Ren Mengzhang, Luo Hong. The Existence of Global Weak Solutions to Thermohaline Circulation Equations [J]. Acta mathematica scientia,Series A, 2018, 38(2): 284-290. |
[5] | Du Guangwei, Niu Pengcheng. Higher Integrability for Very Weak Solutions of Obstacle Problems to Nonlinear Subelliptic Equations [J]. Acta mathematica scientia,Series A, 2017, 37(1): 122-145. |
[6] | Xiang Ni, Shi Juhua, Xu Jinju, Wu Yan. The Gradient Estimates of Laplace Equations with Oblique Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2016, 36(3): 481-492. |
[7] | HUANG Qin, RUAN Qi-Hua. Elliptic Boundary Value Problems on Compact Manifolds [J]. Acta mathematica scientia,Series A, 2015, 35(1): 43-49. |
[8] | LIU Jian, LIAN Ru-Xu, QIAN Mao-Fu. Global Existence of Solution to Bipolar Navier-Stokes-Poisson System [J]. Acta mathematica scientia,Series A, 2014, 34(4): 960-976. |
[9] | RUI Jie, YANG Xiao-Ping. Existence of Weak Solutions for the Minimizing Total Variation Flow with Dirichlet Boundary Conditions [J]. Acta mathematica scientia,Series A, 2011, 31(4): 958-969. |
[10] | LIU Ying, LI Jia. L2 Decay for Weak Solutions of the MHD Equations in Half Space [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1166-1175. |
[11] | ZHENG Shen-Zhou, WANG Xi-Fen. Regularity of Very Weak Solutions for a Class of Quasilinear Subelliptic Equations [J]. Acta mathematica scientia,Series A, 2010, 30(2): 432-439. |
[12] | GAO Hong-Ya, WANG Hong-Min, GU Guang-Ze. Weak Monotonicity for the Component Functions of |Weak Solutions of Beltrami System [J]. Acta mathematica scientia,Series A, 2009, 29(3): 651-655. |
[13] |
Ran Qikang.
Existence of Weak Solutions to a Class of Elliptic Stochastic Partial Differential Equations [J]. Acta mathematica scientia,Series A, 2008, 28(2): 320-328. |
[14] |
Huang Haiyang;Guo Boling.
The Existence of Weak Solutions and the Trajectory Attractors to the Model of Climate Dynamics [J]. Acta mathematica scientia,Series A, 2007, 27(6): 1098-1110. |
[15] | ZHANG Hong-Wei, HE Jing-Yang. Existence of Global Weak Solution and Stabilityof a Class Nonlinear Evolution Equation [J]. Acta mathematica scientia,Series A, 2004, 24(3): 329-336. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|