1 |
Begehr H , Vanegas C J . Iterated Neumann problem for the higher order Poisson equation. Math Nach, 2006, 279, 38- 57
doi: 10.1002/mana.200310344
|
2 |
Begehr H , Vaitekhovich T . Iterated Dirichlet problem for the higher order Poisson equation. Le Matematiche, 2008, 63, 139- 154
|
3 |
Begehr H , Vu T , Zhang Z . Polyharmonic Dirichlet problems. Proc Steklov Inst Math, 2006, 255, 13- 34
doi: 10.1134/S0081543806040031
|
4 |
Begehr H . Dirichlet problems for the biharmonic equation. Gen Math, 2006, 13, 65- 72
|
5 |
Begehr H . Hybrid Green functions and related boundary value problems//Rezapour S. Proc the 37th Annual Iranian Math Conf, 2006, 275- 278
|
6 |
Begehr H . A particular polyharmonic Dirichlet problem. Complex Analysis and Potential Theory, 2007, 84- 115
|
7 |
Begehr H , Du J , Wang Y . A Dirichlet problem for polyharmonic functions. Ann Mat Pura Appl, 2008, 187 (4): 435- 457
|
8 |
Begehr H , Hile G . A hierarchy of integral operators. Rocky Mountain J Math, 1997, 27, 669- 706
doi: 10.1216/rmjm/1181071888
|
9 |
Begehr H , Du Z , Wang N . Dirichlet problem for inhomogeneous complex mixed-partial differential equations of higher order in the unit disc:new view. Operator Theory Advances and Applications, 2009, 205, 101- 128
|
10 |
Dahlberg B , Kenig C . Hardyspaces and the Neumann problem in Lp for Laplace's equation in Lipschitz domains. Ann Math, 1987, 125, 437- 465
doi: 10.2307/1971407
|
11 |
Du Z. Higher order poisson Kernels and Lp polyharmonic boudary value problems in Lipschitz domains. 2015, arXiv: 1503.01208
|
12 |
Du Z , Kou K , Wang J . Lp polyharmonic Dirichlet problems in regular domains Ⅰ:the unit disc. Complex Var Elliptic Equ, 2013, 58, 1387- 1405
doi: 10.1080/17476933.2012.678993
|
13 |
Du Z , Qian T , Wang J . Lp polyharmonic Dirichlet problems in regular domains Ⅱ:the upper-half plane. J Diffferential Equation, 2012, 252, 1789- 1812
doi: 10.1016/j.jde.2011.08.024
|
14 |
Du Z, Qian T, Wang J. Lp polyharmonic Dirichlet problems in regular domains Ⅲ: the unit ball. Complex Var Elliptic Equ 2014, 59: 947-965
|
15 |
Du Z , Qian T , Wang J . Lp polyharmonic Dirichlet problems in regular domains Ⅳ:the upper-half space. J Diffferential Equation, 2013, 255, 779- 795
doi: 10.1016/j.jde.2013.04.035
|
16 |
Du Z , Guo G , Pan K . An inhomogeneous polyharmonic Dirichlet problem with Lp boundary data in the upper half-plane. Complex Var Elliptic Equ, 2017, 62, 1519- 1540
doi: 10.1080/17476933.2016.1254202
|
17 |
Folland G . Introduction to Partial Differential Equations. Princeton: Princeton University Press, 1995
|
18 |
Folland G. Real Analysis: Modern Techniques and Their Applications. New York: John Wiley, 1999
|
19 |
Gazzola F, Grunau H Ch, Sweers G. Polyharmonic Boundary Value Problems. Berlin: Springer, 2010
|
20 |
Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 2001
|
21 |
Grafakos L. Classical Fourier Analysis. Berlin: Springer, 2008
|
22 |
Karachik V V . Solvability conditions for the Neumannn problem for the homogeneous polyharmonic equation. Differential Equ, 2014, 50, 1449- 1456
doi: 10.1134/S0012266114110032
|
23 |
Stein E . Harmonic Analysis:Real Variable Methods, Orthogonality and Oscillatory Intergrals. Princeton: Princeton University Press, 1993
|
24 |
Turmetov B . On some boundary value problems for nonhomogeneous polyharmonic equation with boundary operators of fractional order. Acta Math Sci, 2016, 36B, 831- 846
|
25 |
Turmetov B , Ashurov R . On solvability of the Neumannn boundary value problem for a nonhomogeneous polyharmonic equation in a ball. Boundary Value Problems, 2013, 2013, 162
doi: 10.1186/1687-2770-2013-162
|
26 |
Verchota G . Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. J Funct Anal, 1984, 59, 572- 611
doi: 10.1016/0022-1236(84)90066-1
|
27 |
Verchota G . The Dirichlet problem for the polyharmonic equation in Lipschitz domains. Indiana Univ Math J, 1990, 39, 671- 702
doi: 10.1512/iumj.1990.39.39034
|
28 |
Verchota G . The biharmonic Neumann problem in Lipschitz domains. Acta Math, 2005, 194, 217- 279
doi: 10.1007/BF02393222
|