Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (4): 761-772.
Previous Articles Next Articles
Received:
2018-01-15
Online:
2019-08-26
Published:
2019-09-11
Supported by:
CLC Number:
Chao Wang. Periodic Solutions of a Class of Nonlinear Hill's Type Equations with Bounded Restoring Force[J].Acta mathematica scientia,Series A, 2019, 39(4): 761-772.
1 |
Waltman P . An oscillation criterion for a nonlinear second order equation. J Math Anal Appl, 1965, 10: 439- 441
doi: 10.1016/0022-247X(65)90138-1 |
2 |
Bobisud L E . Oscillation of nonlinear second-order equations. Proc Amer Math Soc, 1969, 23: 501- 505
doi: 10.1090/S0002-9939-1969-0247179-5 |
3 |
Butler G J . On the oscillatory behaviour of a second order nonlinear differential equation. Ann Mat Pura Appl, 1975, 105: 73- 92
doi: 10.1007/BF02414924 |
4 |
Butler G J . Oscillation theorems for a nonlinear analogue of Hill's equation. Quart J Math Oxford Ser, 1976, 27: 159- 171
doi: 10.1093/qmath/27.2.159 |
5 | Kiguradze I T . A note on the oscillation of solutions of the equation u" + a(t)|u|n sgnu=0. Časopis Pěst Mat, 1967, 92: 343- 350 |
6 |
Kwong M K , Wong J S W . An application of integral inequality to secong order nonlinear oscillation. J Differential Equations, 1982, 46: 63- 77
doi: 10.1016/0022-0396(82)90110-3 |
7 | Onose H . Oscillation theorems for nonlinear second oeder diffrential equations. Proc Amer Math Soc, 1970, 26: 461- 464 |
8 |
Wong J S W . On two theorems of Waltman. SIAM J Appl Math, 1966, 14: 724- 728
doi: 10.1137/0114061 |
9 |
Wong J S W . Oscillation criteria for second order nonlinear diffrential equations with integrable coefficients. Proc Amer Math Soc, 1992, 115: 389- 395
doi: 10.1090/S0002-9939-1992-1086346-0 |
10 |
Wong J S W . Oscillation criteria for second order nonlinear diffrential equations involving general means. J Math Anal Appl, 2000, 247 (2): 489- 505
doi: 10.1006/jmaa.2000.6855 |
11 |
Butler G J . Rapid oscillation, nonextendability and the existence of periodic solutions to second-order nonlinear differential equations. J Differential Equations, 1976, 22: 467- 477
doi: 10.1016/0022-0396(76)90041-3 |
12 |
Butler G J . Periodic solutions of sublinear second order differential equations. J Math Anal Appl, 1978, 62: 676- 690
doi: 10.1016/0022-247X(78)90157-9 |
13 |
Papini D . Infinitely many solutions for a Floquet-type BVP with superlinearity indefinite in sign. J Math Anal Appl, 2000, 247: 217- 235
doi: 10.1006/jmaa.2000.6849 |
14 |
Bandle C , Pozio A , Tesei A . The asymptotic behavior of the solutions of degenerate parabolic equations. Trans Amer Math Soc, 1987, 303: 487- 501
doi: 10.1090/S0002-9947-1987-0902780-3 |
15 |
Papini D , Zanolin F . Periodic points and chaotic-like dynamics of planar maps associated to nonlinear Hill's equations with indefinite weight. Georgian Math J, 2002, 9: 339- 366
doi: 10.1515/GMJ.2002.339 |
16 |
Papini D , Zanolin F . On the periodic boundary value problem and chaotic-like dynamics for nonlinear Hill's equations. Adv Nonlinear Stud, 2004, 4: 71- 91
doi: 10.1515/ans-2004-0105 |
17 |
Dambrosio W , Papini D . Periodic solutions of asymptotically linear second order equations with indefinite weight. Ann Mat Pura Appl, 2004, 183: 537- 554
doi: 10.1007/s10231-004-0104-x |
18 | Papini D , Zanolin F . A topological approach to superlinear indefinite boundary-value problem. Topol Methods Nonlinear Anal, 2000, 37: 203- 233 |
19 | Papini D , Zanolin F . Fixed points, periodic points, and coin-tossing sequences for mappings defined on two-dimensional cells. Fixed Point Theory and Applications, 2004, 2004: 113- 134 |
20 | Papini D . Prescribing the nodal behaviour of periodic solutions of a superlinear equation with indefinite weight. Atti Sem Mat Fis Univ Modena, 2003, 51: 43- 63 |
21 | Papini D , Zanolin F . Differential equations with indefinite weight:boundary value problems and qualitative properties of the solutions. Turin Fortnight Lectures on Nonlinear Analysis, Rend Sem Mat Univ Pol Torino, 2002, 60: 265- 295 |
22 |
Nakajima F . Even and periodic solution of the equation ü + g(u)=e(t). J Differential Equations, 1990, 83: 277- 299
doi: 10.1016/0022-0396(90)90059-X |
23 | 丁伟岳. 扭转映射的不动点与常微分方程的周期解. 数学学报, 1982, 25: 227- 235 |
Ding W . Fixed point of twist map and periodic solutions of ODE. Acta Math Sin, 1982, 25: 227- 235 | |
24 | Sansone G , Conti R . Non-linear Diferential Equations. New York: Pergamon, 1964: 404 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|