Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (3): 570-581.
Previous Articles Next Articles
Jing Cui*(),Qiuju Liang,Nana Bi
Received:
2017-02-24
Online:
2019-06-26
Published:
2019-06-27
Contact:
Jing Cui
E-mail:jcui123@126.com
Supported by:
CLC Number:
Jing Cui,Qiuju Liang,Nana Bi. Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion[J].Acta mathematica scientia,Series A, 2019, 39(3): 570-581.
1 | Maslowski B , Nualart D . Evolution equations driven by a fractional Brownian motion. J Funct Anal, 2003, 110: 277- 305 |
2 | Boufoussi B , Hajji S . Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Statist Probab Lett, 2011, 82 (8): 1549- 1558 |
3 |
Boufoussi B , Hajji S . Stochastic delay differential equations in a Hilbert space driven by fractional Brownian motion. Statist Probab Lett, 2017, 129: 222- 229
doi: 10.1016/j.spl.2017.06.006 |
4 |
Feyel D , Pradelle A de la . On fractional Brownian processes. Potential Anal, 1999, 10: 273- 288
doi: 10.1023/A:1008630211913 |
5 | Nualart D . The Malliavin Calculus and Related Topics. Berlin: Springer-Verlag, 2006 |
6 | Ruan D H , Luo J W . Fixed points and exponential stability of stochastic functional partial differential equations driven by fractional Brownian motion. Publ Math Debrecen, 2015, 86: 285- 293 |
7 | Prato G Da , Zabczyk J . Stochastic Equations in Infinite Dimensions. Cambridge: Cambridge Univ Press, 1992 |
8 |
Arthi G , Park Ju H , Jung H Y . Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion. Commun Nonlinear Sci Numer Simul, 2016, 32: 145- 157
doi: 10.1016/j.cnsns.2015.08.014 |
9 |
Cui J , Yan L , Sun X . Exponential stability for neutral stochastic partial differential equations with delays and Poisson Jumps. Statist Probab Lett, 2011, 81: 1970- 1977
doi: 10.1016/j.spl.2011.08.010 |
10 |
Luo J W . Stability of stochastic partial differential equations with infinite delays. J Comput Appl Math, 2008b, 222: 364- 371
doi: 10.1016/j.cam.2007.11.002 |
11 | Acquistapace P , Terreni B . A unified approach to abstract linear nonautonomous parabolic equations. Rend Sem Mat Univ Padova, 1987, 78: 47- 107 |
12 |
Acquistapace P , Terreni B . Initial boundary value problems and optimal control for nonautonomous parabolic systems. SIAM J Control Optim, 1991, 29: 89- 118
doi: 10.1137/0329005 |
13 |
Sakthivel R , Luo J W . Asymptotic stability of impulsive stochastic partial differential equations with infinite delays. J Math Anal Appl, 2009, 356: 1- 6
doi: 10.1016/j.jmaa.2009.02.002 |
14 |
Caraballo T , Liu K . Exponential stability of mild solutions of stochastic partial differential equations with delays. Stoch Anal Appl, 1999, 17: 743- 763
doi: 10.1080/07362999908809633 |
15 |
Caraballo T , Garrido-Atienza M J , Taniguchi T . The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal, 2011, 74: 3671- 3684
doi: 10.1016/j.na.2011.02.047 |
16 | Caraballo T , Mamadou A D . Asymptotic stability of neutral stochastic functional integro-differential equations. Electron Commun Probab, 2015, 20 (1): 1- 13 |
17 |
Caraballo T , Garrido-Atienza Mar'a J , Jos'e Real . Asymptotic Stability of Nonlinear Stochastic Evolution Equations. Stoch Anal Appl, 2003, 21 (2): 301- 327
doi: 10.1081/SAP-120019288 |
18 |
Duncan T E , Maslowski B , Pasik-Duncan B . Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch Dyn, 2002, 2: 225- 250
doi: 10.1142/S0219493702000340 |
19 |
Duc L H , Garrido-Atienzac M J . Exponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in (12, 1). J Differential Equations, 2018, 264: 1119- 1145
doi: 10.1016/j.jde.2017.09.033 |
20 |
Taniguchi T , Liu K , Truman A . Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces. J Differential Equations, 2002, 181: 72- 91
doi: 10.1006/jdeq.2001.4073 |
21 | Mao X . Stochastic Differential Equations and Applications. Chichester, UK: Horwood Publishing, 1997 |
22 | Ren Y , Cheng X , Sakthivel R . On time-dependent stochastic evolution equations driven by fractional Brownian motion in Hilbert space with finite delay. Math Method Appl Sci, 2013, 37: 2177- 2184 |
23 | Ren Y , Cheng X , Sakthivel R . Impulsive neutral stochastic functional integro-differential equations with infinite delay driven by fBm. Appl Math Comput, 2014, 247: 205- 212 |
24 |
Revathib P , Sakthivel R , Ren Y . Stochastic functional differential equations of Sobolev-type with infinite delay. Statist Probab Lett, 2016, 109: 68- 77
doi: 10.1016/j.spl.2015.10.019 |
25 | Bahuguna D , Sakthivel R , Chadha A . Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay. Stoch Anal Appl, 2017, 39: 63- 88 |
26 |
Ren Y , Hou T , Sakthivel R . Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay. Front Math China, 2015, 10: 351- 365
doi: 10.1007/s11464-015-0392-z |
[1] | Gengen Zhang,Wansheng Wang,Aiguo Xiao. Asymptotic Estimation of the Trapezoidal Method for a Class of Neutral Differential Equation with Variable Delay [J]. Acta mathematica scientia,Series A, 2019, 39(3): 560-569. |
[2] | Zhong Yue, Yuan Qian. The Asymptotic Stability of the Zero Solution for A Nonlinear Volterra Equation [J]. Acta mathematica scientia,Series A, 2015, 35(5): 878-883. |
[3] | Luo Ricai, Xu Honglei, Wang Wusheng. Globally Asymptotic Stability of A New Class of Neutral Neural Networks with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2015, 35(3): 634-640. |
[4] | LIU Dan-Hong, XU Gen-Qi. Study on the Diabetic Population Development of Early Warning Modeling [J]. Acta mathematica scientia,Series A, 2014, 34(3): 495-511. |
[5] | ZHANG Hua-Yue, CHEN Wan-Hua, QU Li-An. Dynamic Below-Target Semi-Variance Risk Measure in a Fractional |Black-Scholes Market [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1674-1682. |
[6] | WU Shi-Liang, LIU San-Yang. Global Asymptotic Stability of Bistable Traveling Wave Front in Reaction-diffusion Systems [J]. Acta mathematica scientia,Series A, 2010, 30(2): 440-448. |
[7] | ZHAO Li-Qin. Necessary and Sufficient Conditions for the Global Weak Attractivity and Global Attractivity of a Class of Nonlinear Differential Equations [J]. Acta mathematica scientia,Series A, 2009, 29(3): 529-537. |
[8] | Liu Shaoyue; Yang Xiangqun. Optimal Portfolio in a Fractional Black-Scholes Model with Arbitrary Hurst Parameter [J]. Acta mathematica scientia,Series A, 2008, 28(4): 742-746. |
[9] |
Xu Weijian;.
Stability and Hopf Bifurcation of an SIS Model with Species Logistic Growth and Saturating Infect Rate [J]. Acta mathematica scientia,Series A, 2008, 28(3): 578-584. |
[10] |
Gao Shujing ;Chen Lansun.
ermanence and Global Stability for Single-species Model with Three Life Stages and Time Delay |
[11] | CHEN Die, ZHANG Yu-Min, LIAO Xiao-Cuan-. Stability for Neutral Stochastic Functional Differential Equatio ns [J]. Acta mathematica scientia,Series A, 2005, 25(3): 323-330. |
[12] | Shen Gengcheng Gao Guozhu Li Lifeng. Asymptotic Stability Perturbing Scalar Functional Differential Equations with Unbounded Delay [J]. Acta mathematica scientia,Series A, 1999, 19(5): 493-500. |
[13] | Song Xinyu. ON THE NONAUTONOMOUS PREDATOR-PREY LOTKA-VOLTERRA DIFFUSION SYSTEMS [J]. Acta mathematica scientia,Series A, 1997, 17(S1): 200-205. |
[14] | Luo Yuehu, Feng Dexing. On Asymptotic Stability for C0 Semigroups [J]. Acta mathematica scientia,Series A, 1997, 17(4): 396-402. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|