Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (3): 461-474.
Previous Articles Next Articles
Penghong Zhong1,*(),Ganshan Yang2,Xuan Ma3
Received:
2017-10-19
Online:
2019-06-26
Published:
2019-06-27
Contact:
Penghong Zhong
E-mail:gzydshang@126.com
Supported by:
CLC Number:
Penghong Zhong,Ganshan Yang,Xuan Ma. Global Existence and Self-Similar Blowup of Landau-Lifshitz-Gilbert Equation on Hyperbolic Space[J].Acta mathematica scientia,Series A, 2019, 39(3): 461-474.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Alouges F , Soyeur A . On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness. Nonlinear Anal, 1992, 18 (11): 1071- 1084
doi: 10.1016/0362-546X(92)90196-L |
2 | Bejenaru I , Ionescu A D , Kenig C E , et al. Global Schrödinger maps in dimensions $d \ge 2$: small data in the critical Sobolev spaces. Ann of Math, 2011, 173 (2/3): 1443- 1506 |
3 |
Bejenaru I , Ionescu A D , Kenig C E , et al. Equivariant Schrödinger maps in two spatial dimensions: the $\mathbb{H}^2$ target. Kyoto J Math, 2016, 56 (2): 283- 323
doi: 10.1215/21562261-3478889 |
4 |
Chang N H , Shatah J , Uhlenbeck K . Schrödinger maps. Comm Pure Appl Math, 2000, 53 (5): 590- 602
doi: 10.1002/(ISSN)1097-0312 |
5 |
Ding Q . Explicit blow-up solutions to the Schrödinger maps from $R^2$ to the hyperbolic 2-space $\mathcal{H}^2$. J Math Phys, 2009, 50 (10): 103507
doi: 10.1063/1.3218848 |
6 |
Ding S J , Wang C Y . Finite time singularity of the Landau-Lifshitz-Gilbert equation. Int Math Res Not, 2007
doi: 10.1093/imrn/rnm012 |
7 |
Gutiérrez S , de Laire A . Self-similar solutions of the one-dimensional Landau-Lifshitz-Gilbert equation. Nonlinearity, 2015, 28 (5): 1307- 1350
doi: 10.1088/0951-7715/28/5/1307 |
8 |
Guo B L , Yang G S . Some exact nontrivial global solutions with values in unit sphere for two-dimensional Landau-Lifshitz equations. J Math Phys, 2001, 42 (11): 5223- 5227
doi: 10.1063/1.1402955 |
9 | Hasimoto H. . A soliton on a vortex filament. J Fluid Mech, 1972, 51 (3): 477- 485 |
10 | Hayashi N , Hirata H . Global existence of small solutions to nonlinear Schrödinger equations. Nonlinear Anal, 1998, 31 (5/6): 671- 685 |
11 |
Liu X G . Concentration sets of the Landau-Lifshitz system and quasi-mean curvature flows. Calc Var Partial Differential Equations, 2006, 27 (4): 493- 525
doi: 10.1007/s00526-006-0038-9 |
12 | Landau L D , Lifshitz E M . On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjet, 1935, 8: 153- 169 |
13 | Lin J Y , Lai B S , Wang C Y . Global well-posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey spaces. Calc Var Partial Differential Equations, 2015, 54 (1): 665- 692 |
14 | Li Z X , Shen Y T . Nonsmooth critical point theorems and its applications to quasilinear Schrödinger equations. Acta Math Sci, 2016, 36B (1): 73- 86 |
15 | Li Q Q , Wu X . Existence of nontrivial solutions for generalized quasilinear Schrödinger equations with critical or supercritical growths. Acta Math Sci, 2017, 37B (6): 1870- 1880 |
16 |
Melcher C . Global solvability of the Cauchy problem for the Landau-Lifshitz-Gilbert equation in higher dimensions. Indiana Univ Math J, 2012, 61 (3): 1175- 1200
doi: 10.1512/iumj.2012.61.4717 |
17 |
Merle F , Raphaël P , Radnianski I . Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent Math, 2013, 193 (2): 249- 365
doi: 10.1007/s00222-012-0427-y |
18 | Perelman G . Blow up dynamics for equivariant critical Schrödinger maps. Comm Math Phys, 2014, 330 (1): 69- 105 |
19 |
Salazar M , Pérez Alcázar G A . Landau-Lifshitz-Gilbert equation with symmetric coefficients of the dissipative function Ⅱ. Physica A, 2016, 453: 144- 149
doi: 10.1016/j.physa.2016.02.058 |
20 |
Van Den Berg J B , Williams J F . (In-)stability of singular equivariant solutions to the Landau-Lifshitz-Gilbert equation. Eur J Applied Math, 2013, 24 (6): 921- 948
doi: 10.1017/S0956792513000247 |
21 |
Wang B X . The limit behavior of solutions for the Cauchy problem of the complex Ginzburg-Landau equation. Comm Pure Appl Math, 2002, 55 (4): 481- 508
doi: 10.1002/(ISSN)1097-0312 |
22 |
Wang B X . Globally well and ill posedness for non-elliptic derivative Schrödinger equations with small rough data. J Funct Anal, 2013, 265 (12): 3009- 3052
doi: 10.1016/j.jfa.2013.08.009 |
23 |
Yang G S , Guo B L . Some exact solutions to multidimensional Landau-Lifshitz equation with uprush external field and anisotropy field. Nonlinear Anal, 2009, 71 (9): 3999- 4006
doi: 10.1016/j.na.2009.02.070 |
24 |
Zhong P H , Wang S , Chen S T . Some periodic and blow-up solutions for Landau-Lifshitz equation. Mod Phys Lett A, 2011, 26 (32): 2437- 2452
doi: 10.1142/S0217732311036644 |
25 |
Zhong P H , Wang S , Zeng M . Some exact blowup solutions to multidimensional Schrödinger map equation on hyperbolic space and cone. Mod Phys Lett A, 2013, 28 (10): 1350043
doi: 10.1142/S0217732313500430 |
26 |
Zhong P H , Yang G S . Finite time blowup of multidimensional inhomogeneous isotropic Landau-Lifshitz equation on a hyperbolic space. Comput Math Appl, 2017, 73 (3): 433- 449
doi: 10.1016/j.camwa.2016.11.038 |
[1] | Su Xiao, Wang Shubin. Finite Time Blow-Up for the Damped Semilinear Wave Equations with Arbitrary Positive Initial Energy [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1085-1093. |
[2] | Qiu Hua, Zhang Yingshu, Fang Shaomei. The Global Existence Result of a Leray-α-Oldroyd Model to the Incompressible Viscoelastic Flow [J]. Acta mathematica scientia,Series A, 2017, 37(1): 102-112. |
[3] | Liu Yang. Potential Well and Application to Non-Newtonian Filtration Equations at Critical Initial Energy Level [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1211-1220. |
[4] | Huang Shoujun, Wang Rui. Plane Wave Solutions to the Euler Equations for Chaplygin Gases [J]. Acta mathematica scientia,Series A, 2016, 36(4): 681-689. |
[5] | Di Huafei, Shang Yadong. Global Existence and Nonexistence of Solutions for A Class of Fourth Order Wave Equation with Nonlinear Damping and Source Terms [J]. Acta mathematica scientia,Series A, 2015, 35(3): 618-633. |
[6] | SHEN Ji-Hong, ZHANG Ming-You, YANG Yan-Bing, LIU Bo-Wei, XU Run-Zhang. Global Well-posedness of Cauchy Problem for Damped Multidimensional Generalized Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1173-1187. |
[7] | MI Yong-Sheng, MU Chun-Lai, WU Yun-Long. Global Existence and Blow-up of Solutions to a Doubly Degenerate Parabolic System with Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2014, 34(3): 626-637. |
[8] |
QIN Yu-Ming, LI Hai-Yan.
GLOBAL EXISTENCE AND EXPONENTIAL STABILITY OF SOLUTIONS TO THE QUASILINEAR THERMO-DIFFUSION EQUATIONS WITH SECOND SOUND [J]. Acta mathematica scientia,Series A, 2014, 34(3): 759-778. |
[9] | QU Feng-Long, WANG Yu-Quan. The Interior Transmission Problem for Isotropic Maxwell Equations and Some Estimates on the Index of Refraction [J]. Acta mathematica scientia,Series A, 2014, 34(2): 409-418. |
[10] | LING Zheng-Qiu, ZHOU Ze-Wen. Blow-up and Global Existence of Solutions to a Degenerate Parabolic System with Nonlocal Boundaries [J]. Acta mathematica scientia,Series A, 2014, 34(2): 338-346. |
[11] | HUANG Juan, ZHANG Jian. The Weakly Damped Nonlinear Hartree Equation [J]. Acta mathematica scientia,Series A, 2014, 34(2): 259-265. |
[12] | ZHAO Wei-Xia. The Global Classical Solution to a Free Boundary Problem in the Peeling Phenomenon [J]. Acta mathematica scientia,Series A, 2013, 33(6): 1001-1012. |
[13] | MAO Jian-Feng, LI Ye-Ping. Global Existence and Asymptotic Behavior of Smooth Solutions to the IBVP for the 3D Bipolar Euler-Poisson System [J]. Acta mathematica scientia,Series A, 2013, 33(3): 510-522. |
[14] | LING Zheng-Qiu, LU Wei-Ming, ZHOU Ze-Wen. Uniform Blow-up Profile for a Semilinear Parabolic System with Nonlocal Boundaries [J]. Acta mathematica scientia,Series A, 2012, 32(2): 433-440. |
[15] | CHEN Yu-Juan. Blow-up and Global Existence for |a Nonlocal Degenerate Quasilinear Parabolic System [J]. Acta mathematica scientia,Series A, 2010, 30(2): 386-396. |
|