Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (1): 67-80.
Previous Articles Next Articles
Received:
2017-02-17
Online:
2019-02-26
Published:
2019-03-12
Supported by:
CLC Number:
Zhaoyang Shang. Blow-Up Criterion for Incompressible Magnetohydrodynamics Equations in Besov Space[J].Acta mathematica scientia,Series A, 2019, 39(1): 67-80.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Alfvén H . Existence of electromagnetic-hydrodynamic waves. Nature, 1942, 150: 405- 406 |
2 |
Brezis H , Mironescu P . Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J Evol Equa, 2001, 1 (4): 387- 404
doi: 10.1007/PL00001378 |
3 | Bahouri H , Chemin J Y , Danchin R . Fourier Analysis and Nonlinear Partial Differential Equations. Heidelberg: Springer, 2011 |
4 |
Beale J T , Kato T , Majda A . Remarks on the breakdown of smooth solutions for the 3D Euler equations. Comm Math Phys, 1984, 94: 61- 66
doi: 10.1007/BF01212349 |
5 |
Cannone M , Chen Q , Miao C . A losing estimate for the Ideal MHD equations with application to Blow-up criterion. SIAM J Math Anal, 2007, 38: 1847- 1859
doi: 10.1137/060652002 |
6 |
Chen Q , Miao C , Zhang Z . The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations. Comm Math Phys, 2007, 275: 861- 872
doi: 10.1007/s00220-007-0319-y |
7 |
Chen Q , Miao C , Zhang Z . On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Comm Math Phys, 2008, 284: 919- 930
doi: 10.1007/s00220-008-0545-y |
8 |
Chen Q , Miao C , Zhang Z . On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces. Arch Ration Mech Anal, 2010, 195 (2): 561- 578
doi: 10.1007/s00205-008-0213-6 |
9 |
Caflisch R E , Klapper I , Steele G . Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun Math Phys, 1997, 184: 443- 455
doi: 10.1007/s002200050067 |
10 |
Duvaut G , Lions J L . Inéquations en thermoélasticité et magnéto-hydrodynamique. Arch Rational Mech Anal, 1972, 46: 241- 279
doi: 10.1007/BF00250512 |
11 |
Furioli G , Lemarié-Rieusset P G , Terraneo E . Sur l'unicité dans ${L^3}({{mathbb{R}}^3})$ des solutions "mild" des équations de Navier-Stokes[On the uniqueness in ${L^3}({{mathbb{R}}^3})$ of mild solutions of the Navier-Stokes equations]. C R Acad Sci Paris Sér I Math, 1997, 325: 1253- 1256
doi: 10.1016/S0764-4442(97)82348-8 |
12 |
Hasegawa A . Self-organization processes in continuous media. Adv Phys, 1985, 34: 1- 42
doi: 10.1080/00018738500101721 |
13 |
He C , Xin Z . On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213: 235- 254
doi: 10.1016/j.jde.2004.07.002 |
14 |
He C , Xin Z . Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J Funct Anal, 2005, 227: 113- 152
doi: 10.1016/j.jfa.2005.06.009 |
15 | Hajaiej H, Molinet L, Ozawa T, Wang B. Necessary and sufficient conditions for the fractional GagliardoNirenberg inequalities and applications to Navier-Stokes and generalized boson equations. 2011, arXiv: 1004.4287v3 |
16 |
Kozono H , Ogawa T , Taniuchi Y . The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 242: 251- 278
doi: 10.1007/s002090100332 |
17 |
Kozono H , Taniuchi Y . Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm Math Phys, 2000, 214: 191- 200
doi: 10.1007/s002200000267 |
18 |
Kato T , Ponce G . Commutator estimates and Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41: 891- 907
doi: 10.1002/(ISSN)1097-0312 |
19 | Lifschitz A . Magnetohydro-dynamics and Spectral Theory, Developments in Electromagnetic Theory and Applications. Dordrecht: Kluwer Academic Publishers Group, 1989 |
20 |
Lions P L , Masmoudi N . Uniqueness of mild solutions of the Navier-Stokes system in LN. Comm Partial Differential Equations, 2001, 26: 2211- 2226
doi: 10.1081/PDE-100107819 |
21 |
Lei Z , Zhou Y . BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin Dyn Syst, 2009, 25: 575- 583
doi: 10.3934/dcdsa |
22 | Majda A J . Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York: Springer-Verlag, 1984 |
23 |
Miao C , Yuan B . On the well-posedness of the Cauchy problem for an MHD system in Besov spaces. Math Methods Appl Sci, 2009, 32 (1): 53- 76
doi: 10.1002/mma.v32:1 |
24 |
Ogawa T , Taniuchi Y . On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain. J Differential Equations, 2003, 190: 39- 63
doi: 10.1016/S0022-0396(03)00013-5 |
25 |
Prodi G . Un teorema di unicitá per le equazioni di Navier-Stokes[A uniqueness theorem for the NavierStokes equations]. Ann Mat Pura Appl, 1959, 48: 173- 182
doi: 10.1007/BF02410664 |
26 |
Politano H , Pouquet A , Sulem P L . Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence. Phys Plasmas, 1995, 2: 2931- 2939
doi: 10.1063/1.871473 |
27 | Ren W . On the blow-up criterion for the 3D Boussinesq system with zero viscosity constant. Appl Anal, 2015, 94 (48): 56- 862 |
28 | Serrin J. The Initial Value Problem for the Navier-Stokes Equations//Langer R E. Proceedings of the Symposium on Nonlinear Problems. Madison: Univ of Wisconsin Press, 1963: 69-98 |
29 |
Sermange M , Temam R . Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36 (5): 635- 664
doi: 10.1002/(ISSN)1097-0312 |
30 |
Shang Z . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3 (1): 1- 11
doi: 10.3934/Math.2018.1.1 |
31 |
Wen H , Zhu C . Global solutions to the three-dimensional full compressible Navier-Stokes equations with vacuum at infinity in some classes of large data. SIAM J Math Anal, 49 (1): 162- 221
doi: 10.1137/16M1055414 |
32 |
Wu J . Bounds and new approaches for the 3D MHD equations. J Nonlinear Sci, 2002, 12: 395- 413
doi: 10.1007/s00332-002-0486-0 |
33 | Wu J . Regularity results for weak solutions of the 3D MHD equations. Discrete Contin Dynam Syst, 2004, 10: 543- 556 |
34 | Wu J . Regularity criteria for the generalized MHD equations. Commun Partial Differ Equa, 2008, 33 (2): 285- 306 |
35 | Wu J . Global regularity for a class of generalized magnetohydrodynamic equations. J Math Fluid Mech, 2011, 13 (2): 295- 305 |
36 |
Xu X , Ye Z , Zhang Z . Remark on an improved regularity criterion for the 3D MHD equations. Appl Math Lett, 2015, 42: 41- 46
doi: 10.1016/j.aml.2014.11.004 |
37 | Xu X , Ye Z . Note on global regularity of 3D generalized magnetohydrodynamicmodel with zero diffusivity. Commun Pure Appl Anal, 2015, 14 (2): 585- 595 |
38 | Ye Z . Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann Mat Pura Appl, 2016, 4 (4): 1111- 1121 |
39 |
Ye Z , Xu X . Global regularity of 3D generalized incompressible magnetohydrodynamic model. Appl Math Lett, 2014, 35: 1- 6
doi: 10.1016/j.aml.2014.03.018 |
40 |
Ye Z , Xu X . Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system. Nonlinear Anal, 2014, 100: 86- 96
doi: 10.1016/j.na.2014.01.012 |
41 |
Zhang Q . Refined blow-up criterion for the 3D magnetohydrodynamics equations. Appl Anal, 2013, 92 (12): 2590- 2599
doi: 10.1080/00036811.2012.751589 |
42 |
Zhou Y . Remarks on regularities for the 3D MHD equations. Discrete Contin Dynam Systems, 2005, 12: 881- 886
doi: 10.3934/dcdsa |
43 | Zhang Z , Liu X . On the blow-up criterion of smooth solutions to the 3D Idea lMHD equations. Acta Math Appl Sinica E, 2004, 20: 695- 700 |
44 |
Zhang Z , Tang T , Liu L . An Osgood type regularity criterion for the liquid crystal flows. Nonlinear Differ Equa Appl, 2014, 21: 253- 262
doi: 10.1007/s00030-013-0245-y |
45 | Zhang Z , Sadek G . Osgood type regularity criterion for the 3D Newton-Boussinesq equation. Electron J Dierential Equations, 2013, 223: 1- 6 |
46 |
Zhang Z , Yang X . Navier-Stokes equations with vorticity in Besov spaces of negative regular indices. J Math Anal Appl, 2016, 440: 415- 419
doi: 10.1016/j.jmaa.2016.03.037 |
47 | Zhang Z . A logarithmically improved regularity criterion for the 3D MHD system involving the velocity field in homogeneous Besov spaces. Ann Polon Math, 2016, 18 (1): 51- 57 |
[1] | Cai Gang. The Well-Posedness of Degenerate Differential Equations with Finite Delay in Banach Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(2): 264-275. |
[2] | Chen Pengfei. The Inviscid and Non-Resistive Limit for 3D Nonhomogeneous Incompressible MHD Equations with a Slip Boundary Condition [J]. Acta mathematica scientia,Series A, 2018, 38(1): 83-95. |
[3] | Fang Jingxuan, Zhao Jiman. Variable Homogeneous Besov and Triebel-Lizorkin Spaces on Stratified Groups [J]. Acta mathematica scientia,Series A, 2018, 38(1): 34-45. |
[4] | Song Naiqi, Zhao Jiman. Strichartz Estimates for the Wave Equation with the Full-Laplacian on the Quaternion Heisenberg Group [J]. Acta mathematica scientia,Series A, 2016, 36(1): 90-116. |
[5] | ZHAO Kai, LI Peng-Tao. Molecular Decompositions of Besov Spaces on Domains and an Application [J]. Acta mathematica scientia,Series A, 2013, 33(5): 926-936. |
[6] | BIAN Dong-Fen, YUAN Bao-Quan. Regularity of Weak Solutions to the Generalized Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1601-1609. |
[7] | ZHOU Jiang, CAO Yong-Hui, MA Bai-Lin. Bilinear Pseudodifferential Operators with Forbidden Symbols on Morrey Type |Spaces [J]. Acta mathematica scientia,Series A, 2011, 31(2): 335-342. |
[8] | SUN Jian-Zhu, FAN Ji-Shan. Regularity Criteria for a Two-fluid Model of the Truncated Euler Equations [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1693-1698. |
[9] | XU Jing-Shi. Atomic Decomposition of Herz-type Besov and Triebel-Lizorkin Spaces [J]. Acta mathematica scientia,Series A, 2009, 29(6): 1500-1507. |
[10] | WANG Heng-Geng, DAO Xiang-Xin. The Molecule Decomposition of Besov Spaces and Their Application to PDE [J]. Acta mathematica scientia,Series A, 2003, 23(4): 449-455. |
|