Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (4): 750-769.
Previous Articles Next Articles
Zhao Yuanzhang, Ma Xiangru
Received:
2017-07-11
Revised:
2017-12-11
Online:
2018-08-26
Published:
2018-08-26
Supported by:
CLC Number:
Zhao Yuanzhang, Ma Xiangru. Blow-Up Analysis for a Nonlocal Reaction-Diffusion Equation with Variant Diffusion Coefficient[J].Acta mathematica scientia,Series A, 2018, 38(4): 750-769.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Bebernes J, Bressan A. Thermal behavior for a confined reactive gas. J Differential Equations, 1982, 44(1):118-133 |
[2] | Bebernes J, Eberly D. Mathematical Problems from Combustion Theory. New York:Springer-Verlag, 1989 |
[3] | Pao C V. Nonlinear Parabolic and Elliptic Equations. New York:Plenum Press, 1992 |
[4] | Straughan B. Explosive Instabilities in Mechanics. Berlin:Springer, 1998 |
[5] | Quittner R, Souplet P. Superlinear Parabolic Problems:Blow-up, Global Existence and Steady States. Basel:Birkhauser, 2007 |
[6] | Hu B. Blow-up Theories for Semilinear Parabolic Equations. Berlin:Springer, 2011 |
[7] | Bandle C, Brunner H. Blow-up in diffusion equations:A survey. J Comput Appl Math, 1998, 97(1):3-22 |
[8] | Levine H A. The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32(2):262-288 |
[9] | Levine H A. Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics:the method of unbounded Fourier coefficients. Math Ann, 1975, 214(3):205-220 |
[10] | Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Neumann boundary conditions. Appl Anal, 2006, 85(10):1301-1311 |
[11] | Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Dirichlet boundary conditions. J Math Anal Appl, 2007, 328(2):1196-1205 |
[12] | Quittner P. On global existence and stationary solutions for two classes of semilinear parabolic problems. Comment Math Univ Carolin, 1993, 34(1):105-124 |
[13] | Song J C. Lower bounds for the blow-up time in a non-local reaction-diffusion problem. Appl Math Lett, 2011, 24(5):793-796 |
[14] | Tang G S, Li Y F, Yang X T. Lower bounds for the blow-up time of the nonlinear non-local reaction diffusion problems in RN(N ≥ 3). Bound Value Probl, 2014, DOI:10.1186/s13661-014-0265-5 |
[15] | Liu Y. Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions. Math Comput Modelling, 2013, 57(3/4):926-931 |
[16] | Song X F, Lv X S. Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source. Appl Math Comput, 2014, 236:78-92 |
[17] | Ma L W, Fang Z B. Blow-up analysis for a nonlocal reaction-diffusion equation with robin boundary conditions. Taiwanese J Math, 2017, 21(1):131-150 |
[18] | Wang N. A remark on bounds for the blowup time of the solutions to quasilinear parabolic problems. Math Appl (Wuhan), 2015, 28(2):299-302 |
[19] | Liu D M, Mu C L, Xin Q. Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation. Acta Math Sci, 2012, 32B(3):1206-1212 |
[20] | Fang Z B, Yang R, Chai Y. Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption. Math Probl Eng, 2014, 2014(2):1-6 |
[21] | Bao A G, Song X F. Bounds for the blow-up time of the solutions to quasi-linear parabolic problems. Z Angew Math Phys, 2014, 65(1):115-123 |
[22] | Li F S, Li J L. Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions. J Math Anal Appl, 2012, 385(2):1005-1014 |
[23] | Baghaei K, Hesaaraki M. Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations. C R Math Acad Sci Paris, 2013, 351(s19/20):731-735 |
[24] | Fang Z B, Wang Y X. Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Z Angew Math Phys, 2015, 66(5):1-17 |
[25] | Ma L W, Fang Z B. Blow-up phenomena for a semilinear parabolic equation with weighted inner absorption under nonlinear boundary flux. Math Methods Appl Sci, 2016, 40(1):1-14 |
[26] | Ma L W, Fang Z B. Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux. Nonlinear Anal Real World Appl, 2016, 32:338-354 |
[27] | Wang N, Song X F, Lv X S. Estimates for the blow-up time of a combustion model with nonlocal heat sources. J Math Anal Appl, 2015, 436(2):1180-1195 |
[1] | Niu Yi, Peng Xiuyan, Wang Xingchang, Yu Tao, Yang Yanbing. Quenching Solution for Nonlinear Heat Equation with Opposite Absorption Sources and Its Simulation [J]. Acta mathematica scientia,Series A, 2018, 38(1): 168-173. |
[2] | Yang Wenbin, Wu Jianhua. Some Dynamics in Spatial Homogeneous and Inhomogeneous Activator-Inhibitor Model [J]. Acta mathematica scientia,Series A, 2017, 37(2): 390-400. |
[3] | Ma Lingwei, Fang Zhongbo. Lower Bounds of Blow-up Time for a Reaction-Diffusion Equation with Weighted Nonlocal Sources and Robin Type Boundary Conditions [J]. Acta mathematica scientia,Series A, 2017, 37(1): 146-157. |
[4] | Zhou Sen, Yang Zuodong. Extinction and Non-Extinction Behavior of Solutions for a Class of Reaction-Diffusion Equations with a Nonlinear Source [J]. Acta mathematica scientia,Series A, 2016, 36(3): 531-542. |
[5] | Wang Gang, Tang Yanbin. Exponential Attractors for Reaction-Diffusion Equations in H2(Ω) and L2P-2(Ω) [J]. Acta mathematica scientia,Series A, 2015, 35(4): 641-650. |
[6] | Liu Jiang, Zhu Lintao, Lin Zhigui. An SEI Epidemic Diffusive Model and Its Moving Front [J]. Acta mathematica scientia,Series A, 2015, 35(3): 604-617. |
[7] | LI Yu-Huan, ZHOU Jun, MU Chun-Lai. Stability Analysis for a Predator-Prey System with Nonlocal Delayed Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2012, 32(3): 475-488. |
[8] | WANG Chang-You, WANG Shu, LI Lin-Rui. Periodic Solution and Almost Periodic Solution of a Nonmonotone Reaction-diffusion System with Time Delay [J]. Acta mathematica scientia,Series A, 2010, 30(2): 517-524. |
[9] | Xie Qiangjun; Zhang Guangxin; Zhou Zekui. The Existence of Positive Periodic Solutions for a Kind of Periodic Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2009, 29(2): 465-474. |
[10] |
Wu Shiliang ;Li Wantong.
Stability and Traveling Fronts in Lotka-Volterra Cooperation Model with Stage Structure [J]. Acta mathematica scientia,Series A, 2008, 28(3): 454-464. |
[11] | Kang Dongsheng. Explicit Wavefront Solutions of a Reaction-diffusion Equation and Global Analysis of a Planar Cubic System [J]. Acta mathematica scientia,Series A, 1998, 18(S1): 1-12. |
|