Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (4): 728-739.
Previous Articles Next Articles
Zhang Xiaojian
Received:
2017-04-06
Revised:
2017-09-19
Online:
2018-08-26
Published:
2018-08-26
Supported by:
CLC Number:
Zhang Xiaojian. Oscillation of Generalized Emden-Fowler Differential Equations with Nonlinear Neutral Term[J].Acta mathematica scientia,Series A, 2018, 38(4): 728-739.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Agarwal R P, Bohner M, Li W T. Nonoscillation and Oscillation:Theory for Functional Differential Equations. New York:Marcel Dekker, 2004 |
[2] | Hasanbulli M, Rogovchenko Yu V. Oscillation criteria for second order nonlinear neutral differential equations. Appl Math Comput, 2010, 215:4392-4399 |
[3] | Li T, Agarwal R P, Bohner M. Some oscillation results for second-order neutral differential equations. J Indian Math Soc, 2012, 79:97-106 |
[4] | Lin X, Tang X. Oscillation of solutions of neutral differential equations with a superlinear neutral term. Appl Math Lett, 2007, 20:1016-1022 |
[5] | Han Z, Li T, Sun S, et al. Remarks on the paper. Appl Math Comput, 2009, 207:388-396; Appl Math Comput, 2010, 215:3998-4007 |
[6] | Sun Y G, Meng F W. Note on the paper of Dzurina and Stavroulakis. Appl Math Comput, 2006, 174:1634-1641 |
[7] | 黄记洲, 符策红. 广义Emden-Fowler方程的振动性. 应用数学学报,2015, 38(6):1126-1135 Huang Jizhou, Fu Cehong. Oscillation criteria of generalized Emden-Fowler equations. Acta Mathematicae Applicatae Sinica, 2015, 38(6):1126-1135 |
[8] | 曾云辉, 罗李平, 俞元洪. 中立型Emden-Fowler时滞微分方程的振动性. 数学物理学报,2015, 35A(4):803-814 Zeng Yunhui, Luo liping, Yu Yuanhong. Oscillation for Emden-Fowler delay differential equations of neutral type. Acta Mathematica Scientia, 2015, 35A(4):803-814 |
[9] | Li T, Rogovchenko Yu V, Zhang C. Oscillation of second-order neutral differential equations. Funkc Ekvac, 2013, 56:111-120 |
[10] | Sun S, Li T,Han Z, et al. Oscillation theorems for second-order quasilinear neutral functional differential equations. Abstract and Applied Analysis, 2012, 2012:1-17 |
[11] | Zhong J, Ouyang Z, Zou S. An oscillation theorem for a class of second-order forced neutral delay differential equations with mixed nonlinearities. Applied Mathematics Letters, 2011, 24(8):1449-1454 |
[12] | Sun S, Li T, Han Z, et al. On oscillation of second-order nonlinear neutral functional differential equations. Bull Malays Math Sci Soc, 2013, 36(3):541-554 |
[13] | Yang J S, Qin X W, Zhang X J. Oscillation criteria for certain second-order nonlinear neutral delay dynamic equations with damping on time scales. Mathematica Applicata, 2015, 28(2):439-448 |
[14] | 杨甲山. 具非线性中立项的二阶变时滞微分方程的振荡性. 华东师范大学学报(自然科学版), 2016, 2016(4):30-37 Yang Jiashan. Oscillation of second-order variable delay differential equations with nonlinear neutral term. Journal of East China Normal University (Natural Science), 2016, 2016(4):30-37 |
[15] | 杨甲山, 覃桂茳. 一类二阶微分方程新的Kamenev型振动准则. 浙江大学学报(理学版), 2017,44(3):274-280 Yang Jiashan, Qin Guijiang. Kamenev-type oscillation criteria for certain second-order differential equations. Journal of Zhejiang University (Science Edition), 2017, 44(3):274-280 |
[16] | 杨甲山. 具阻尼项的二阶Emden-Fowler型泛函差分方程的振动性. 华中师范大学学报(自然科学版), 2017, 51(6):723-730 Yang Jiashan. Oscillation criteria for second-order Emden-Fowler functional difference equations with damping. Journal of Central China Normal University(Natural Sciences), 2017, 51(6):723-730 |
[17] | 李文娟, 汤获, 俞元洪. 中立型Emden-Fowler微分方程的振动性. 数学物理学报,2017, 37A(6):1062-1069 Li Wenjuan, Tang Huo, Yu Yuanhong. Oscillation of the neutral Emden-Fowler differential equation. Acta Mathematica Scientia, 2017, 37A(6):1062-1069 |
[1] | Wang Huiling, Gao Jianfang. Oscillation Analysis of Analytical Solutions for a Kind of Nonlinear Neutral Delay Differential Equations with Several Delays [J]. Acta mathematica scientia,Series A, 2018, 38(4): 740-749. |
[2] | Luo Liping, Luo Zhenguo, Deng Yihua. Effect of Impulsive Perturbations on Oscillation of Nonlinear Delay Hyperbolic Distributed Parameter Systems [J]. Acta mathematica scientia,Series A, 2018, 38(2): 313-321. |
[3] | Yang Jiashan, Li Tongxing. Oscillation for a Class of Second-Order Damped Emden-Fowler Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2018, 38(1): 134-155. |
[4] | Li Wenjuan, Tang Huo, Yu Yuanhong. Oscillation of the Neutral Emden-Fowler Differential Equation [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1062-1069. |
[5] | Wang Yunzhu, Gao Jianfang. Oscillation Analysis of Numerical Solutions in the θ-Methods for a Kind of Nonlinear Delay Differential Equation [J]. Acta mathematica scientia,Series A, 2017, 37(2): 342-351. |
[6] | Zeng Yunhui, Luo Liping, Yu Yuanhong. Oscillation Criteria for Generalized Neutral Emden-Fowler Equations [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1067-1081. |
[7] | Ma Qingxia, Liu Anping. Oscillation of Neutral Impulsive Hyperbolic Systems with Deviating Arguments [J]. Acta mathematica scientia,Series A, 2016, 36(3): 462-472. |
[8] | Zeng Yunhui, Luo liping, Yu Yuanhong. Oscillation for Emden-Fowler Delay Differential Equations of Neutral Type [J]. Acta mathematica scientia,Series A, 2015, 35(4): 803-814. |
[9] | XIE Sheng-Li. Existence Results of Damped Second Order Impulsive Functional Differential Equations with Infinite Delay [J]. Acta mathematica scientia,Series A, 2015, 35(1): 97-109. |
[10] | YANG Jia-Shan. Oscillation Criteria for Second-Order Dynamic Equations with Positive and Negative Coefficients and Damping on Time Scales [J]. Acta mathematica scientia,Series A, 2014, 34(2): 393-408. |
[11] | MA Wen-Jun, MA Qiao-Zhen, GAO Pei-Ming. Regularity and Global Attractor of Nonlinear Elastic Rod Oscillation Equation [J]. Acta mathematica scientia,Series A, 2014, 34(2): 445-453. |
[12] | CHEN Da-Xue. Bounded Oscillation for Second-order Nonlinear Neutral Delay Dynamic Equations with Oscillating Coefficients [J]. Acta mathematica scientia,Series A, 2013, 33(1): 98-113. |
[13] | LIN Quan-Wen, YU Yuan-Hong. Integral Average |of Philos Type for Second Order Nonlinear Oscillation [J]. Acta mathematica scientia,Series A, 2012, 32(4): 661-669. |
[14] | FENG Chun-Hua. Oscillatory Behavior for a Simplified n-neuron BAM Neural Networks Model with Time Delays [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1490-1501. |
[15] | YANG Jie, QI Jian-Gang, JING Hai-Bin. Patching Lemma and Deficiency Indices for |Singular Hamiltonian Differential Systems [J]. Acta mathematica scientia,Series A, 2011, 31(3): 652-661. |
|