Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (2): 276-283.
Previous Articles Next Articles
Yu Chun, Wan Youyan
Received:
2017-06-19
Revised:
2017-10-13
Online:
2018-04-26
Published:
2018-04-26
Supported by:
CLC Number:
Yu Chun, Wan Youyan. The Existence of Ground State to the Generalized Choquard-Pekar Equation with Superlinear Nonlinearities[J].Acta mathematica scientia,Series A, 2018, 38(2): 276-283.
[1] Pekar S. Untersucheng über die Elektronentheorie der Kristalle. Berlin:Akademie Verlag, 1954 [2] Alexandrov A S, Devreese J T. Advances in Polaron Physics. Berlin:Springer, 2010 [3] Lieb E H. Existence and uniqueness of the minimizing solution of choquards nonlinear equation. Stud Appl Math, 1976/1977, 57:93-105 [4] Lions P L. Solutions of Hartree-Fock equations for colomb system. Comm Math Phys, 1987, 109:33-97 [5] Alves C, Yang M. Existence of semiclassical ground state solutions for a generalized Choquard equation. J Diff Eq, 2014, 257:4133-4164 [6] D'Avenia P, Siciliano G, Squassina M. On fractional Choquard equation. Math Models and Methods in Appl Sciences, 2015, 25:1447-1476 [7] Cingolani S, Clapp M, Secchi S. Multiple solutions to magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63:233-248 [8] Ma L, Zhao L. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal, 2010, 195:455-467 [9] Melgaard M, Zongo F. Multiple solutions of the quasirelativistic Choquard equation. J Math Phys, 2012, 53:033709 [10] Moroz V, Schaftingen Van. Semi-classical states for the Choquard equation. Calc Var Partial Differential Equations, 2015, 52:199-235 [11] Wei J, Winter M. Strongly interacting bumps for the Schrödinger-Newton equations. J Math Phys, 2009, 50:012905 [12] Zhang Z, Tassilo K, Hu A, Xia H. Existence of a nontrivial solution for Choquard's equation. Acta Mathematica Scientia, 2006, 26B(3):460-468 [13] Sun X, Zhang Y. Multi-peak solution for nonlinear magnetic Choquard type equation. J Math Phys, 2014, 55(3):1731-1769 [14] 曹道珉.广义Choquard-Pekar方程非平凡解的存在性. 数学物理学报,1989, 9A(1):101-112Cao D M. The existence of nontrivial solution to the generalized Choquard-Pekar equation. Acta Mathematica Scientia, 1989, 9A(1):101-112 [15] Stein E M, Weiss G. Fractional integrals in n-dimensional Euclidean spaces. J Math Mech, 1958, 7(4):503-514 [16] Chen W, Jin C, Li C, Lim J. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Discrete and Continuous Dynamical Systems, 2005, Supplement Volume:164-172 [17] Lions P L. The concentration-compactness principle in the calculus of variation. The locally compact case. Part I. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1:109-145 [18] Lions P L. The concentration-compactness principle in the calculus of variation. The locally compact case. Part Ⅱ. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1:223-283 |
[1] | Chen Lin. Multiple Solutions for a Quasilinear Elliptic System of Kirchhoff Type [J]. Acta mathematica scientia,Series A, 2017, 37(4): 671-683. |
[2] | Qin Dongdong, Li Yunyang, Tang Xianhua. Schrödinger Equation with Asymptotically Linear Nonlinearity and Spectrum Point Zero [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1103-1116. |
[3] | Li Jing, Chen Caisheng. Nehari Method to Solutions for a Class of Quasilinear Schrödinger Equations in RN [J]. Acta mathematica scientia,Series A, 2016, 36(3): 507-520. |
[4] | Fan Zi-an. On Nonhomogeneous Elliptic Equations Involving Caffarelli-Kohn-Nirenberg Critical Exponent [J]. Acta mathematica scientia,Series A, 2015, 35(5): 884-894. |
[5] | Xu Na, Ma Shiwang. Ground State Solutions for A Periodic Schrödinger Equation with Critical Sobolev Exponent [J]. Acta mathematica scientia,Series A, 2015, 35(4): 651-655. |
[6] | Deng Yihua, Luo Liping, Zhou Lijun. Existence of A Ground State Solution for A Class of Superlinear p-Laplace Equations with Negative Potential Functions [J]. Acta mathematica scientia,Series A, 2015, 35(3): 578-586. |
[7] | ZHANG Wen-Li, ZHONG Li-Nan. Multiplicity of Positive Solutions for a (p, q-Laplacian Elliptic Systems in RN [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1264-1274. |
[8] | ZHANG Jian, TANG Xian-Hua, ZHANG Wen. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION [J]. Acta mathematica scientia,Series A, 2014, 34(3): 840-850. |
[9] | ZHANG Ya-Jing. Multiple Solutions for Biharmonic Equations with Concave-Convex Nonlinearities [J]. Acta mathematica scientia,Series A, 2013, 33(2): 353-365. |
[10] | ZHANG Wen-Li, ZHONG Li-Nan. Existence and Multiplicity of Nonnegative Solutions for a Quasilinear System in RN [J]. Acta mathematica scientia,Series A, 2013, 33(1): 174-184. |
[11] | LV Deng-Feng. Least Energy Solutions for a Class of Singular Critical Elliptic Systems [J]. Acta mathematica scientia,Series A, 2012, 32(6): 1136-1148. |
[12] | WEI Gong-Ming. Neumann Problem for Coupled Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2009, 29(5): 1398-1414. |
[13] | Luo Lin; Xu Guojin. Concentration Behavior of the Ground State Solutions for Fourth Order Elliptic Equation [J]. Acta mathematica scientia,Series A, 2007, 27(4): 761-768. |
[14] | Gan Zaihui ;Zhang Jian. Standing Waves for a Class of Coupled Nonlinear Klein-Gordon Equations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 559-569. |
[15] | Gan Zaihui;Zhang Jian. Sharp Conditions of Global Existence for the Generalized Davey-Stewartson System in Three Dimensional Space [J]. Acta mathematica scientia,Series A, 2006, 26(1): 87-092. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|