[1] Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71:1661-1664 [2] Camassa R, Holm D D, Hyman J M. A new integrable shallow water equation. Adv Appl Mech, 1994, 1:1-33 [3] 冯育强, 王蔚敏, 李寿贵. 带有奇异非线性项的分数微分方程周期解的存在性与唯一性. 数学物理学报, 2015, 35A(6):1059-1070 Feng Y Q, Wang W M, Li S G. Existence and uniqueness results for the periodic boundary value problems of fractional differential equations with singular nonlinearities. Acta Mathematica Scientia, 2015, 35A(6):1059-1070 [4] Constantin A, McKean H P. A shallow water equation on the circle. Commun Pure Appl Math, 1999, 52:949-982 [5] 魏含玉, 夏铁成. 广义Broer-Kaup-Kupershmidt孤子方程的拟周期解. 数学物理学报, 2016, 36A(2):317-327 Wei H Y, Xia T C. Quasi-periodic solution of the generalized Broer-Kaup-Kupershmidt soliton equation. Acta Mathematica Scientia, 2016, 36A(2):317-327 [6] 陈少伟, 肖利琴. 一类带大参数的周期Thomas-Fermi-Dirac-von Weizsäcker方程非零解的存在性. 数学物理学报, 2016, 36(5):965-977 Chen S W, Xiao L Q. Existence of nontrivial solution of a periodic Thomas-Fermi-Dirac-von Weizsäcker equation with a large. Acta Mathematica Scientia, 2016, 36(5):965-977 [7] Johnson R S. Camassa-Holm, Korteweg-de Vries and related models for water waves. J Fluid Mech, 2002, 455:63-82 [8] 匡杰,王泽军. 非齐次Burgers方程周期解的大时间行为. 数学物理学报,2015, 35(1):1-14 Kuang J, Wang Z J. The large time behavior of inhomogeneous Burgers equation with periodic initial data. Acta Mathematica Scientia, 2015, 35(1):1-14 [9] 张兴永. 一阶带线性部分Hamilton系统的周期解. 数学物理学报, 2013, 33(5):894-905 Zhang X Y. Periodic solutions for the first order Hamiltonian system with linear part. Acta Mathematica Scientia. 2013, 33(5):894-905 [10] Constantin A, Lannes D. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch Ration Mech Anal, 2009, 192:165-186 [11] Atici F M, Guseinov G S. On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions. J Comput Appl Math, 2001, 132:341-356 [12] Jiang D Q, Chu J F, O'Regan D, Agarwal R P. Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces. J Math Anal Appl, 2003, 286:563-576 [13] Torres P J. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel'skii fixed point theorem. J Differential Equations, 2003, 190:643-662 [14] O'Regan D, Wang H Y. Positive periodic solutions of systems of second order ordinary differential equations. Positivity, 2006, 10:285-298 [15] Graef J R, Kong L J, Wang H Y. Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. J Differential Equations, 2008, 245:1185-1197 [16] Ma R Y, Xu J, Han X L. Global bifurcation of positive solutions of a second-order periodic boundary value problem with indefinite weight. Nonlinear Anal, 2011, 74:3379-3385 [17] Ma R Y, Xu J, Han X L. Global structure of positive solutions for superlinear second-order periodic boundary value problems. Appl Math Comput, 2012, 218:5982-5988 [18] 马如云, 高承华. 二阶常微分方程周期解的全局分歧. 数学物理学报, 2009, 29A(5):1223-1232 Ma R Y, Gao C H. Global bifurcation of periodic solutions to second order ordinary differential equations. Acta Mathematica Scientia, 2009, 29A(5):1223-1232 [19] Dai G W, Ma R Y, Wang H Y. Eigenvalues, bifurcation and one-sign solutions for the periodic p-Laplacian. Commun Pure Appl Anal, 2013, 12(6):2839-2872 [20] Berestycki H. On some nonlinear Sturm-Liouville problems. J Differential Equations. 1977, 26:375-390 [21] Schmitt K, Smith H L. On eigenvalue problems for nondifferentiable mappings. J Differential Equations, 1979, 33:294-319 [22] Ma R Y, Dai G W. Global bifurcation and nodal solutions for a Sturm-Liouville problem with a nonsmooth nonlinearity. J Funct Anal, 2013, 265:1443-1459 [23] Dai G W. Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable. Electr J Qual Theory Differ Equ, 2013, 65:1-7 [24] Dai G W, Ma R Y. Unilateral global bifurcation for p-Laplacian with non-p-1-lineariza-tion nonlinearity. Discrete Contin Dyn Syst, 2015, 35(1):99-116 [25] Dai G W, Ma R Y. Global bifurcation, Berestycki's conjecture and one-sign solutions for p-Laplacian. Nonlinear Anal, 2013, 91:51-59 [26] Binding P A, Rynne B P. Half-eigenvalues of periodic Sturm-Liouville problems. J Differential Equations, 2004, 206:280-305 [27] Kielhöfer H. Bifurcation Theory:An Introduction with Applications to PDEs. New York:Springer-Verlag, 2004 [28] Rabinowitz P H. Some global results for nonlinear eigenvalue problems. J Funct Anal, 1971, 7:487-513 [29] Dancer E N. On the structure of solutions of non-linear eigenvalue problems. Indiana Univ Math J, 1974, 23:1069-1076 [30] Dancer E N. Bifurcation from simple eigenvaluses and eigenvalues of geometric multiplicity one. Bull Lond Math Soc, 2002, 34:533-538 [31] López-Gómez J. Spectral Theory and Nonlinear Functional Analysis. Boca Raton:CRC, 2001 [32] Picone M. Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second ordine. Ann Scuola Norm Pisa, 1910, 11:1-141 [33] Kusano T, Jaros T, Yoshida N. A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order. Nonlinear Anal, 2000, 40:381-395 [34] Ma R Y, An Y L. Global structure of positive solutions for nonlocal boundary value problems involving integral conditions. Nonlinear Anal, 2009, 71:4364-4376 [35] Whyburn G T. Topological Analysis. Princeton:Princeton University Press, 1958 [36] Ambrosetti A, Calahorrano R M, Dobarro F R. Global branching for discontinuous problems. Comment Math Univ Carolin, 1990, 31:213-222 |