Acta mathematica scientia,Series A ›› 2017, Vol. 37 ›› Issue (5): 801-807.

    Next Articles

On the Zeros of Confluent Hypergeometric Functions

Lin Weichuan1, Luo Xudan2   

  1. 1. Department of Mathematics, Fujian Normal University, Fuzhou 350007;
    2. Department of Applied Mathematics, University of Colorado at Boulder, Colorado, USA
  • Received:2016-12-17 Revised:2017-05-21 Online:2017-10-26 Published:2017-10-26
  • Supported by:

    Supported by the NSFC (11371225) and the Natural Science Foundation of Fujian Province (2011J01006)

Abstract:

There have been many applications of confluent hypergeometric functions in quantum mechanics and statistics. Furthermore, many problems in mathematical physics can be solved with the help of the location of zeros of confluent hypergeometric functions. In this paper, we study the zero sets of the confluent hypergeometric function 1F1(α;γ;z):=zn, where α,γ,γ-α∉Z ≤ 0, and show that if {zn}n=1 is the zero set of F(α;γ;z) with multiple zeros repeated and modulus in increasing order, then there exists a constant M > 0 such that|zn|≥ Mn for all n ≥ 1.

Key words: Confluent hypergeometric functions, Jensen Formula, Entire function, Zerosequence

CLC Number: 

  • O174
Trendmd