Acta mathematica scientia,Series A ›› 2017, Vol. 37 ›› Issue (2): 342-351.
Previous Articles Next Articles
Wang Yunzhu, Gao Jianfang
Received:
2016-07-12
Revised:
2016-10-24
Online:
2017-04-26
Published:
2017-04-26
Supported by:
CLC Number:
Wang Yunzhu, Gao Jianfang. Oscillation Analysis of Numerical Solutions in the θ-Methods for a Kind of Nonlinear Delay Differential Equation[J].Acta mathematica scientia,Series A, 2017, 37(2): 342-351.
[1] Anderson D R,Zafer A.Nonlinear oscillation of second order dynamic equations on time scales.Applied Mathematics Letters,2009,22:1591-1597 [2] Nicola G,Ernst H.Regularization of neutral delay differential equations with several delays.Journal of Dynamics and Differential Equations,2013,25:173-192 [3] Fatma K,Huseyin B,Gizem S.Oscillatory and periodic solutions of impulsive differential equations with piecewise constant argument.Acta Applicandae Mathematicae,2010,110:499-510 [4] Leonid B,Elena B.Linearized oscillation theory for a nonlinear nonautonomous delay differential equation.Journal of Computayional and Applied Mathematics,2003,151:119-127 [5] Zhang C H,Li T X,Agarwal R P,Bohner M.Oscillation results for fourth-order nonlinear dynamic equations.Applied Mathematics Letters,2012,25:2058-2065 [6] Tang X H,Lin X Y.Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations.Journal of Mathematical Analysis and Applications,2006,321:553-568 [7] Warminska A,Manoach E,Warminski J,Samborski S.Regular and chaotic oscillations of a timoshenko beam subjected to mechanical and thermal loadings.Continuum Mechanics and Thermodynamics,2015,27:719-737 [8] Sobolev G A.On some properties in the emergence and evolution of the oscillations of the earth after earthquakes.Izvestiya-Physics of the Solid Earth,2013,49:610-625 [9] Kubiaczyk I,Saker S H,Sikorska-nowak A.Oscillation criteria for nonlinear neutral functional dynamic equations on times scales.Mathematic Slovaca,2013,63:263-290 [10] Jiang C M,Tian Y Z,Jiang Y,Li T X.Some oscillation results for nonlinear second-order differential equations with damping.Advances in Difference Equations,2015,1:1-14 [11] Bohner M,Li T X.Kamenev-type criteria for nonlinear damped dynamic equations.Science China-Mathematics,2015,58:1445-1452 [12] Agarwal R P,Bohner M,Li T X,Zhang C H.Even-order half-linear advanced differential equations improved criteria in oscillatory and asymptotic properties.Applied Mathematics and Computation,2015,266:481-490 [13] Gao J F,Song M H,Liu M Z.Oscillation analysis of numerical solutions for nonlinear delay differential equations of population dynamics.Mathematical Modelling and Analysis,2011,16:365-375 [14] Wang Q,Wen J C.Oscillations of numerical solution for nonlinear delay differential equations in food limited population model.Mathematic Applicata,2013,26:360-366 [15] Györi I,Ladas G.Oscillation Theory of Delay Equations with Applications.Oxford:Clarendon Press,1991 [16] Tang X H,Yu J S.Linearized oscillation of first-order nonlinear neutral delay differential equations.Journal of Mathematical Analysis and Applications,2001,258:194-208 [17] Peng D H,Han M A,Wang H Y.Linearized oscillations of first order nonlinear neutraldelay difference equations.Computers Mathematics with Applications,2003,45:1785-1796 [18] Yang Z W,Liu M Z,Song M H.Stability of Runge-Kutta methods in the numerical solution of equation of u'(t)=au(t)+a0u([t])+a1u([t-1] ).Applied Mathematics and Computation,2005,162:37-50 |
[1] | Zhang Xiaojian. Oscillation of Generalized Emden-Fowler Differential Equations with Nonlinear Neutral Term [J]. Acta mathematica scientia,Series A, 2018, 38(4): 728-739. |
[2] | Wang Huiling, Gao Jianfang. Oscillation Analysis of Analytical Solutions for a Kind of Nonlinear Neutral Delay Differential Equations with Several Delays [J]. Acta mathematica scientia,Series A, 2018, 38(4): 740-749. |
[3] | Luo Liping, Luo Zhenguo, Deng Yihua. Effect of Impulsive Perturbations on Oscillation of Nonlinear Delay Hyperbolic Distributed Parameter Systems [J]. Acta mathematica scientia,Series A, 2018, 38(2): 313-321. |
[4] | Wang Wansheng, Zhong Peng, Zhao Xinyang. Long-Time Stability of Nonlinear Neutral Differential Equations with Variable Delay [J]. Acta mathematica scientia,Series A, 2018, 38(1): 96-109. |
[5] | Yang Jiashan, Li Tongxing. Oscillation for a Class of Second-Order Damped Emden-Fowler Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2018, 38(1): 134-155. |
[6] | Li Wenjuan, Tang Huo, Yu Yuanhong. Oscillation of the Neutral Emden-Fowler Differential Equation [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1062-1069. |
[7] | Zeng Yunhui, Luo Liping, Yu Yuanhong. Oscillation Criteria for Generalized Neutral Emden-Fowler Equations [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1067-1081. |
[8] | Ma Qingxia, Liu Anping. Oscillation of Neutral Impulsive Hyperbolic Systems with Deviating Arguments [J]. Acta mathematica scientia,Series A, 2016, 36(3): 462-472. |
[9] | Zeng Yunhui, Luo liping, Yu Yuanhong. Oscillation for Emden-Fowler Delay Differential Equations of Neutral Type [J]. Acta mathematica scientia,Series A, 2015, 35(4): 803-814. |
[10] | YANG Jia-Shan. Oscillation Criteria for Second-Order Dynamic Equations with Positive and Negative Coefficients and Damping on Time Scales [J]. Acta mathematica scientia,Series A, 2014, 34(2): 393-408. |
[11] | MA Wen-Jun, MA Qiao-Zhen, GAO Pei-Ming. Regularity and Global Attractor of Nonlinear Elastic Rod Oscillation Equation [J]. Acta mathematica scientia,Series A, 2014, 34(2): 445-453. |
[12] | YE Hui, CAI Dong-Han. Global Attractivity in a Periodic Nicholson's Blowflies Model [J]. Acta mathematica scientia,Series A, 2013, 33(6): 1013-1021. |
[13] | CHEN Da-Xue. Bounded Oscillation for Second-order Nonlinear Neutral Delay Dynamic Equations with Oscillating Coefficients [J]. Acta mathematica scientia,Series A, 2013, 33(1): 98-113. |
[14] | LIN Quan-Wen, YU Yuan-Hong. Integral Average |of Philos Type for Second Order Nonlinear Oscillation [J]. Acta mathematica scientia,Series A, 2012, 32(4): 661-669. |
[15] | FENG Chun-Hua. Oscillatory Behavior for a Simplified n-neuron BAM Neural Networks Model with Time Delays [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1490-1501. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|