[1] Arnold V I. Ten problems. Adv Soviet Math, 1990, 1: 1-8
[2] Khovansky A G. Real analytic manifolds with finiteness properties and complex Abelian integrals. Funct Anal Appl, 1984, 18: 119-128
[3] Varchenko A N. Estimate of the number of zeros of an Abelian integral depending on a parameter and limit cycles. Funct Anal Appl, 1984, 18: 98-108
[4] Petrov G S. Elliptic integrals and their nonoscillation. Funct Anal Appl, 1986, 20: 37-40
[5] Petrov G S. Complex zeros of an elliptic integral. Funct Anal Appl, 1987, 21: 247-248
[6] Petrov G S. Complex zeros of an elliptic integral. Funct Anal Appl, 1989, 23: 160-161
[7] Zhao Y L, Zhang Z F. Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians. J Differential Equations, 1999, 155: 73-88
[8] Zhou X, Li C P. Estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians with two centers. Appl Math Comput, 2008, 204: 202-209
[9] Zhou X, Li C P. On the algebraic structure of Abelian integrals for a kind of pertubed cubic Hamiltonian systems. J Math Anal Appl, 2009, 359: 209-215
[10] Zhao L Q, Qi M H, Liu C J. The cylicity of period annuli of a class of quintic Hamiltonian systems. J Math Anal Appl, 2013, 403: 391-407
[11] Horozov E, Iliev I D. Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians. Nonlinearity, 1998, 11: 1521-1537
[12] Wu J J, Zhang Y K, Li C P. On the number of zeros of Abelian integrals for a kind of quartic Hamiltonians. Appl Math Comput, 2014, 228: 329-335
[13] Yang J H, Zhao L Q. Zeros of Abelian integrals for a quartic Hamiltonian with figure-of-eight loop through a nilpotent saddle. Nonlinear Analysis: Real World Applications, 2016, 27: 350-365
[14] Li W G, Zhao Y L, Zhang Z F. Abelian integrals for quadratic centers having almost all their orbits formed by quadratic. Nonlinearity, 2002, 15: 863-885 |