[1] Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series. Trans Amer Math Soc, 1952, 72: 341-366
[2] Daubechies I, Grossman A, Meyer Y. Painless nonorthogonal expansions. J Math Phys, 1986, 27: 1271-1283
[3] Borup L, Gribonval R, Nielsen M. Tight wavelet frames in Lebesgue and Sobolev spaces. J Funct Spaces Appl, 2004, 2(3): 227-252
[4] Borup L, Gribonval R, Nielsen M. Bi-framelet systems with few vanishing moments characterize Besov spaces. Appl Comput Harmon Anal, 2004, 17(1): 3-28
[5] Gröchenig K. Foundations of Time-Frequency Analysis. Boston: Birkhäuser, 2001
[6] Lu D Y, Fan Q B. Characterizations of Lp(R) using tight wavelet frames. Wuhan University Journal of Natural Sciences, 2010, 15(6): 461-466
[7] Córdoba A, Fefferman C. Wave packets and Fourier integral operators. Comm Partial Differential Equations, 1978, 3(11): 979-1005
[8] Labate D, Weiss G, Wilson E. An approach to the study of wave packet systems. Contemp Math, 2004, 345: 215-235
[9] Hernández E, Labate D, Weiss G, Wilson E. Oversampling, quasi affine frames and wave packets. Appl Comput Harmon Anal, 2004, 16: 111-147
[10] Christensen O, Rahimi A. Frame properties of wave packet systems in L2(Rd). Adv Comput Math, 2008, 29: 101-111
[11] Czaja W, Kutyniok G, Speegle D. The geometry of sets of parameters of wave packets. Appl Comput Harmon Anal, 2006, 20(1): 108-125
[12] Candès E J, Demanet L. The curvelet representation of wave propagators is optimally sparse. Comm Pure Appl Math, 2005, 58(11): 1472-1528
[13] Guo K, Labate D. Representation of Fourier integral operators using shearlets. J Fourier Anal Appl, 2008, 14(3): 327-371
[14] Lacey M, Thiele C. Lp estimates on the bilinear Hilbert transform for 2 < p < ∞. Ann Math, 1999, 2(3): 693-724
[15] Li D F, Wen C L. Properties of multiresolution analysis in Sobolev spaces. Pure and Applied Mathematics (in Chinese), 2000, 16(3): 1-5
[16] Han B, Shen Z. Dual wavelet frames and Riesz bases in Sobolev spaces. Constr Approx, 2009, 29(3): 369-406
[17] Lu D Y, Li D F. A characterization of orthonormal wavelet families in Sobolev spaces. Acta Mathematica Scientia, 2011, 31(4): 1475-1488
[18] Labate D. A unified characterization of reproducing systems generated by a finite family. J Geom Anal, 2002, 12(3): 469-491
[19] Hernández E, Labate D, Weiss G. A unified characterization of reproducing systems generated by a finite family Ⅱ. J Geom Anal, 2002, 12(4): 615-662
[20] Hernández E, Weiss G. A First Course on Wavelets. Boca Raton: CRC Press, 1996 |