Acta mathematica scientia,Series A ›› 2016, Vol. 36 ›› Issue (4): 722-739.
Previous Articles Next Articles
Yang Xinguang1, Zhao Mingxia2, Hou Wei3
Received:
2015-12-16
Revised:
2016-05-13
Online:
2016-08-26
Published:
2016-08-26
Supported by:
Support by the Mainstay Fund from Henan Normal University,the Foundation of Henan Educational Committee(15A110033) and the Program for Science and Technology Innovation Grant of Henan Province(142102210448)
CLC Number:
Yang Xinguang, Zhao Mingxia, Hou Wei. Upper Semi-Continuity of Pullback Attractors for the 2D Non-Autonomous Navier-Stokes Equations with Weak Damping[J].Acta mathematica scientia,Series A, 2016, 36(4): 722-739.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Arrieta J M, Carvalho A N, Bernal A R. Perturbation of the diffusion and upper semi-continuity of attractors. Appl Math Letter, 1999, 12: 37-42 |
[1] | Zhao Min, Zhou Shengfan. Random Attractor for Non-Autonomous Stochastic Boussinesq Lattice Equations with Additive White Noises [J]. Acta mathematica scientia,Series A, 2018, 38(5): 924-940. |
[2] | Wang Junli, Zhang Xingwei, Liu Jian. Instability of Plane Couette-Poiseuille Flow of Compressible Navier-Stokes Equation [J]. Acta mathematica scientia,Series A, 2018, 38(2): 322-333. |
[3] | Wang Heyuan, Cui Jin. The Analysis of Global Stability and Numerical Simulation of Chaos Behaviors of Rotating Flow [J]. Acta mathematica scientia,Series A, 2017, 37(4): 783-792. |
[4] | ZHANG Zu-Jin. An Improved Regularity Criterion for the 3D Navier-Stokes Equations in Terms of Two Entries of the Velocity Gradient [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1327-1335. |
[5] | YANG Xin-Guang, WANG Hong-Jun, LI Jun-Tao. Uniform Attractors for the 2D Non-Autonomous Navier-Stokes Equation with Weak Damping [J]. Acta mathematica scientia,Series A, 2014, 34(4): 828-840. |
[6] | GAO Zhen-Sheng, JIANG Fei, WANG Wei-Wei. Semi-Strong Solutions to Hydrodynamic Flow of Liquid Crystals [J]. Acta mathematica scientia,Series A, 2014, 34(2): 367-377. |
[7] | DONG Jian-Wei, ZHANG You-Lin, WANG Yan-Ping. Analysis of the Stationary Quantum Navier-Stokes Equations in one Space Dimension [J]. Acta mathematica scientia,Series A, 2013, 33(4): 719-727. |
[8] |
SONG Hong-Li, GUO Zhen-Hua.
Existence of Global Strong Solutions and Interface Behavior of Solutions for 1D Compressible Navier-Stokes Equations with Free Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2013, 33(4): 601-620. |
[9] | BIAN Dong-Fen, YUAN Bao-Quan. Regularity of Weak Solutions to the Generalized Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1601-1609. |
[10] | ZHAO Cai-De. H1-uniform Attractor for 2D Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1416-1430. |
[11] | YUAN Hong-Jun, WANG Shu. The Zero-Mach Limit of the Compressible Convection [J]. Acta mathematica scientia,Series A, 2011, 31(1): 53-63. |
[12] | SUN Jian-Zhu, FAN Ji-Shan. Regularity Criteria for a Two-fluid Model of the Truncated Euler Equations [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1693-1698. |
[13] | SHI Dong-Yang, WANG Hui-Min. The Lumped Mass Nonconforming Finite Element Approximation for the Nonstationary Navier-Stokes Equations on Anisotropic Meshes [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1018-1029. |
[14] |
Li Kaitai;Jia Huilian.
The Navier-Stokes Equations in Stream Layer or on Stream Surface and a Dimension Split Method [J]. Acta mathematica scientia,Series A, 2008, 28(2): 266-282. |
[15] |
Zhang Ting.
Discontinuous Solutions of the Navier-Stokes Equations for Compressible Flow with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2008, 28(2): 214-221. |
|