Acta mathematica scientia,Series A ›› 2016, Vol. 36 ›› Issue (3): 531-542.
Previous Articles Next Articles
Zhou Sen1,2, Yang Zuodong1,3
Received:
2015-11-03
Revised:
2016-03-24
Online:
2016-06-26
Published:
2016-06-26
Supported by:
Supported by the NSFC (11571093, 11471164)
CLC Number:
Zhou Sen, Yang Zuodong. Extinction and Non-Extinction Behavior of Solutions for a Class of Reaction-Diffusion Equations with a Nonlinear Source[J].Acta mathematica scientia,Series A, 2016, 36(3): 531-542.
[1] Aassila M. The influence of nonlocal nonlinearities on the long time behavior of solutions of diffusion problem. J Differential Equations, 2003, 192:47-69 |
[1] | Zhao Yuanzhang, Ma Xiangru. Blow-Up Analysis for a Nonlocal Reaction-Diffusion Equation with Variant Diffusion Coefficient [J]. Acta mathematica scientia,Series A, 2018, 38(4): 750-769. |
[2] | Niu Yi, Peng Xiuyan, Wang Xingchang, Yu Tao, Yang Yanbing. Quenching Solution for Nonlinear Heat Equation with Opposite Absorption Sources and Its Simulation [J]. Acta mathematica scientia,Series A, 2018, 38(1): 168-173. |
[3] | Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1148-1161. |
[4] | Yang Wenbin, Wu Jianhua. Some Dynamics in Spatial Homogeneous and Inhomogeneous Activator-Inhibitor Model [J]. Acta mathematica scientia,Series A, 2017, 37(2): 390-400. |
[5] | Ma Lingwei, Fang Zhongbo. Lower Bounds of Blow-up Time for a Reaction-Diffusion Equation with Weighted Nonlocal Sources and Robin Type Boundary Conditions [J]. Acta mathematica scientia,Series A, 2017, 37(1): 146-157. |
[6] | Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching [J]. Acta mathematica scientia,Series A, 2016, 36(3): 569-583. |
[7] | Wang Gang, Tang Yanbin. Exponential Attractors for Reaction-Diffusion Equations in H2(Ω) and L2P-2(Ω) [J]. Acta mathematica scientia,Series A, 2015, 35(4): 641-650. |
[8] | Liu Jiang, Zhu Lintao, Lin Zhigui. An SEI Epidemic Diffusive Model and Its Moving Front [J]. Acta mathematica scientia,Series A, 2015, 35(3): 604-617. |
[9] | Zhang Shuwen. A Stochastic Predator-Prey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592-603. |
[10] | LI Yu-Huan, ZHOU Jun, MU Chun-Lai. Stability Analysis for a Predator-Prey System with Nonlocal Delayed Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2012, 32(3): 475-488. |
[11] | ZHONG Min-Ling, LIU Xiu-Xiang. Dynamical Analysis of a Predator-prey System with Hassell-Varley-Holling Functional Response [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1295-1310. |
[12] | ZHANG Jing, REN Yan-Xia. Properties of Superdiffusions with Singular Branching Mechanism [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1474-1484. |
[13] | WANG Chang-You, WANG Shu, LI Lin-Rui. Periodic Solution and Almost Periodic Solution of a Nonmonotone Reaction-diffusion System with Time Delay [J]. Acta mathematica scientia,Series A, 2010, 30(2): 517-524. |
[14] | Xie Qiangjun; Zhang Guangxin; Zhou Zekui. The Existence of Positive Periodic Solutions for a Kind of Periodic Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2009, 29(2): 465-474. |
[15] | Li Fucai. Global Existence and Blow-up of Solutions to a Quasi-linear Degenerate Parabolic System [J]. Acta mathematica scientia,Series A, 2008, 28(6): 1187-1193. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|