Acta mathematica scientia,Series A ›› 2014, Vol. 34 ›› Issue (4): 879-889.
• Articles • Previous Articles Next Articles
ZHONG Yan-Sheng
Received:
2013-02-26
Revised:
2014-05-04
Online:
2014-08-25
Published:
2014-08-25
Supported by:
国家自然科学基金(11026208)、福建省自然科学基金 (2012J05002)、福建师范大学非线性分析及应用创新团队项目(IRTL1206)和博士后基金(2011M501074)资助.
CLC Number:
ZHONG Yan-Sheng. Multiple Solutions for the p&q-Laplacian Problem with Supercritical Exponent[J].Acta mathematica scientia,Series A, 2014, 34(4): 879-889.
[1] Szulkin A. Ljusternik Schnirelman theory on C1-manifolds. Anal non Lin\'{e}aire, 1988, 5(2): 119--139 [2] Zeidler E. Ljusternik-Schnirelman theory on general level sets. Math Nachr, 1986, 129(1): 235--259 [3] Zeidler E. The Ljusternik Schnirelman theory for indefinite and not necessarily odd nonlinear operators and its applications. Nonlinear Anal TMA, 1980, 4(3): 451--489 [4] Amann H. Ljusternik-Schnirelman theory and nonlinear eigenvalue problems. Math Ann, 1972, 199: 55--72 [5] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical sobolev exponent. Comm Pure Appl Math, 1983, 36(4): 437--477 [6] Brezis H. Nonlinear Equation Involving the Critical Sobolev Exponent-survey and Perspectives//Crandall M C, et al, ed. Directions in Partial Differential Equations. New York: Academic Press Inc, 1987: 17--36 [7] Shao Z Q, Hong J X. The eigenvalue problem for the Laplacian equations. Acta Math Scientia, 2007, 27B(2): 329--337 [8] Garcia Azorero J P, Peral Alonso I. Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues. Comm Partial Differential Equations, 1987, 12(12): 1389--1430 [9] Garcia Azorero J P, Peral Alonso I. Comportement asymptotique des valeurs propres du p-Lapacien. C R Acad Sci Paris S\'{e}r 1 Math, 1988, 307(2): 75--78 [10] Guedda M, V\'{e}ron L. Quasilinear elliptic equations involving critical sobolev exponents. Nonlinear Anal, 1989, 13(8): 879--902 [11] Li G B. The Existence of Nontrivial Solution of Quasilinear Elliptic PDE of Variational Type (in chinese). Wuhan: Wuhan Univ, 1987 [12] Motreanu D, Motreanu V V, Papageorgiou N S. A multiplicity theorem for problems with the p-Laplacian. [13] Torre F, Ruf B. Multiplicity of solutions for a superlinear p-Laplacian equation. Nonlinear Anal, 2010, 73(7): 2132--2147 [14] Zhu X P. Nontrivial solution of quasilinear elliptic equations involving critical Sobolev exponent. Sciences, Sinica Ser A, 1988, 31(1): 1166--1181 [15] Lions P L. The concentration-compactness principle in the calculus of virations: the limit case, Part 1. Rev Mat Iberoamericana, 1985, 1: 145--201 [16] Lions P L. The concentration-compactness principle in the calculus of virations: the limit case, Part 2. Rev Mat Iberoamericana, 1985, 2: 45--121 [17] Benci V, Micheletti A M, Visetti D. An eigenvalue problem for a quasilinear elliptic field equation. J Dif Equ, 2002, 184(2): 299--320 [18] He C J, Li G B. The existence of a nontrivial solution to the p\&q-Laplacian problem with nonlinearity asymptotic to up-1 at infinity in Rn. Nonlinear Anal, 2008, 68(5): 1100--1119 [19] Li G B, Zhang G. Multiple solutions for the p&q-Laplacian problem with critical exponent. Acta Math Scientia, 2009, 29B(4): 903--918 [20] Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer Science Business Media, LLC, 2011 [21] Halmos P R. Measure Theory. New York: Springer-Verlag, 1974 [22] Evans L C. Weak convergence methods for nonlinear partial differential equations. Conference Board of the Mathematical Sciences, Number 74. Providence, RI: Amer Math Soc, 1990 |
[1] | Zhang Xiaojian. Oscillation of Generalized Emden-Fowler Differential Equations with Nonlinear Neutral Term [J]. Acta mathematica scientia,Series A, 2018, 38(4): 728-739. |
[2] | Li Haixia. Stability and Uniqueness of Positive Solutions for a Food-Chain Model [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1094-1104. |
[3] | Chen Kai. General Continuous Solutions of a Dhombres Type Functional Equation [J]. Acta mathematica scientia,Series A, 2016, 36(4): 690-702. |
[4] | Xia Zhinan. On Existence and Asymptotic Behavior of Solutions for Functional Integral Equation of Volterra-Stieltjes Type [J]. Acta mathematica scientia,Series A, 2016, 36(1): 130-143. |
[5] | Liangquan Zhang. The Viability Property for Path-Dependent SDE Under Open Constraints [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1168-1179. |
[6] |
WANG Fei, WANG Jing.
Analysis of A Diffusive Predator-prey Model with Disease and Holling II Functional Response [J]. Acta mathematica scientia,Series A, 2015, 35(1): 15-28. |
[7] | XIE Sheng-Li. Existence Results of Damped Second Order Impulsive Functional Differential Equations with Infinite Delay [J]. Acta mathematica scientia,Series A, 2015, 35(1): 97-109. |
[8] | XU Hong-Yan, YANG Lian-Zhong. Growth and Poles of Solutions of Systems of Complex Composite Functional Equations [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1381-1390. |
[9] | CHEN Ze-Qan, SUN Mu. AREA INTEGRAL FUNCTIONS FOR SECTORIAL OPERATORS ON Lp SPACES [J]. Acta mathematica scientia,Series A, 2014, 34(3): 739-747. |
[10] | ZHANG Jian, TANG Xian-Hua, ZHANG Wen. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION [J]. Acta mathematica scientia,Series A, 2014, 34(3): 840-850. |
[11] | ZHANG Shen-Yuan, QIU Jing-Hui. Monotone Minkowski Functionals and Scalarizations of Henig Proper Efficiency [J]. Acta mathematica scientia,Series A, 2014, 34(3): 581-592. |
[12] | WANG Xue-Chen, WEI Jun-Jie. The Effect of Delay on a Diffusive Predator-Prey System with Ivlev-Type Functional Response [J]. Acta mathematica scientia,Series A, 2014, 34(2): 234-250. |
[13] | HAN Ling-Xiong, Wu Garidi, LIU Guo-Feng. The Equivalence of the Smooth Modulus with Weights and a K-Functional in Orlicz Spaces and it's Application [J]. Acta mathematica scientia,Series A, 2014, 34(1): 95-108. |
[14] | DAI Guo-Wei, DA Ting. Local C1(Ω) -minimizers Versus W1, p(x)(Ω)-minimizers of Nonsmooth Functionals [J]. Acta mathematica scientia,Series A, 2013, 33(3): 424-430. |
[15] | FU Ke-Aong. A Note on Strong Approximation for Trimmed Sums [J]. Acta mathematica scientia,Series A, 2013, 33(2): 267-275. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 112
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|