Acta mathematica scientia,Series A ›› 2014, Vol. 34 ›› Issue (2): 367-377.
• Articles • Previous Articles Next Articles
GAO Zhen-Sheng1, JIANG Fei2, WANG Wei-Wei2, 3*
Received:
2012-10-19
Revised:
2013-12-20
Online:
2014-04-25
Published:
2014-04-25
Supported by:
中央高校科研基金(11QZR18)、华侨大学高层次人才科研基金(12BS232)和国家自然科学基金 (11101044, 11271051)资助.
CLC Number:
GAO Zhen-Sheng, JIANG Fei, WANG Wei-Wei. Semi-Strong Solutions to Hydrodynamic Flow of Liquid Crystals[J].Acta mathematica scientia,Series A, 2014, 34(2): 367-377.
[1] Lin F. Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Comm Pure Appl Math, 1989, 42: 789--814 [5] Coutand D, Shkoller S. Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals. C R Acad Sci Paris, Srie I, 2001, 333: 919--924 [6] Liu C, Shen J. On liquid crystal flows with free-slip boundary conditions. Discrete and Continuous Dynamic Systems, 2001, 7: 307--318 [7] Blanca C E, Francisco G G, Marko R M. Reproductivity for a nematic liquid crystal model. Z angew Math Phys, 2006, 53: 984--998 [8] Liu X, Zhang Z. Lp existence of the flow of liquid crystals system. Chinese Annals of Mathematics, 2009, 30A: 1--20 [9] Jiang F, Tan Z. Global weak solution to the flow of liquid crystals system. Mathematical Methods in the Applied Sciences, 2009, 32: 2243--2266 [10] Xu J, Tan Z. Global existence of the finite energy weak solutions to a nematic liquid crystals model. Mathematical Models and Methods in Applied Sciences, 2011, 34: 929--938 [11] Wang D, Yu C. Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch Rational Mech Anal, 2012, 204: 881--915 [12] Duan Z W, Han S X, Zhou L. Boundary layer asymptotic behavior of incompressible Navier-Stokes equation in a cylinder with small viscosity. Acta Mathematica Scientia, 2008, {\bf 28}(3): 449--720 [13] Wang Y. Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock. Acta Mathematica Scientia, 2008, 28(4): 727--748 [15] Chen G Q, Dan O, Qian Z M. The Navier-Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundary. Acta Mthematica Scientia, 2009, 29(4): 919--948 [16] Qi Y M, Song J P. Maximal attractors for the compressible Navier-Stokes equations of viscous and heat conductive fluid. Acta Mathematica Scientia, 2010, 30(1): 289--311 [17] Cai X J, Lei L H. L2 decay of the incompressible Navier-Stokes equations with damping. Acta Mathematica Scientia, 2010, 30(4): 1235--1248 [18] Luisa C. Partical regularity for the Navier-Stokes-Fourier system. Acta Mathematica Scientia, 2011, 31(5): 1653--1670 [19] Hsiao L, Li H L, Yang T, Zou C. Comressible non-isentropic bipolar Navier-Stokes-Poisson system in R3. Acta Mathematica Scientia, 2011, 31(6): 2169--2194 [20] Wu Z G, Wang W K. Pointwise estimates of solution for non-isentropic Navier-Stokes-Poisson equations in multi-dimen sions. Acta Mathematica Scientia, 2012, 32(5): 1681--1702 [21] Mohamed A A, Jiang F, Tan Z. Decay estimates for isentropic compressible magnetohydrodynamic equations in bounded damain. Acta Mathematica Scientia, 2012, 32(6): 2211--2220 [22] Guo R C, Jiang F, Yin J P. A note on complete bounded trajectories and attractors for compressible self-gravitating fluids. Nonlinear Analysis-Theory Methods & Applications, 2012, 75(4): 1933--1944 [24] Jiang F, Tan Z. Blow-up of viscous compressible reactive self-gravitating gas. Acta Mathematicae Applicatae Sinica-English Series, 2012, 28(2): 401--408 [25] Chang K C, Ding W Y, Ye R. Finite-time blow-up of the heat flow of harmonic maps from surfaces. Journal of Differential Geometry, 1992, 2: 507--515 [26] Wen H, Ding S. Solutions of incompressible hydrodynamic flow of liquid crystals. Nonlinear Analysis: Real World Applications, 2011, 12: 1510--1531 [27] Lin F, Lin J, Wang C. Liquid crystal flows in two dimensions. Arch Rational Mech Anal, 2011, 197: 297--336 [28] Lions P. Mathematical Topics in Fluid Mechanics: Incompressible models. New York: Oxford University Press, 1996 [29] Novotn\`{y} A, Stra\v{s}kraba I. Introduction to the Mathematical Theory of Compressible Flow. New York: Oxford University Press, 2004 [30] Jiang F, Tan Z. On the domain dependence of solutions to the Navier-Stokes equations of a two-dimensional [31] Jiang F, Tan Z. On radially symmetric solutions of the compressible isentropic self-gravitating fluid. Nonlinear Analysis: TMA, 2010, 72: 3463--3483 |
[1] | ZHANG Zu-Jin. An Improved Regularity Criterion for the 3D Navier-Stokes Equations in Terms of Two Entries of the Velocity Gradient [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1327-1335. |
[2] | YANG Xin-Guang, WANG Hong-Jun, LI Jun-Tao. Uniform Attractors for the 2D Non-Autonomous Navier-Stokes Equation with Weak Damping [J]. Acta mathematica scientia,Series A, 2014, 34(4): 828-840. |
[3] | DONG Jian-Wei, ZHANG You-Lin, WANG Yan-Ping. Analysis of the Stationary Quantum Navier-Stokes Equations in one Space Dimension [J]. Acta mathematica scientia,Series A, 2013, 33(4): 719-727. |
[4] |
SONG Hong-Li, GUO Zhen-Hua.
Existence of Global Strong Solutions and Interface Behavior of Solutions for 1D Compressible Navier-Stokes Equations with Free Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2013, 33(4): 601-620. |
[5] | BIAN Dong-Fen, YUAN Bao-Quan. Regularity of Weak Solutions to the Generalized Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1601-1609. |
[6] | ZHAO Cai-De. H1-uniform Attractor for 2D Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1416-1430. |
[7] | YUAN Hong-Jun, WANG Shu. The Zero-Mach Limit of the Compressible Convection [J]. Acta mathematica scientia,Series A, 2011, 31(1): 53-63. |
[8] | SUN Jian-Zhu, FAN Ji-Shan. Regularity Criteria for a Two-fluid Model of the Truncated Euler Equations [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1693-1698. |
[9] | SHI Dong-Yang, WANG Hui-Min. The Lumped Mass Nonconforming Finite Element Approximation for the Nonstationary Navier-Stokes Equations on Anisotropic Meshes [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1018-1029. |
[10] |
Li Kaitai;Jia Huilian.
The Navier-Stokes Equations in Stream Layer or on Stream Surface and a Dimension Split Method [J]. Acta mathematica scientia,Series A, 2008, 28(2): 266-282. |
[11] |
Zhang Ting.
Discontinuous Solutions of the Navier-Stokes Equations for Compressible Flow with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2008, 28(2): 214-221. |
[12] | Dong Boqing; Li Yongsheng. Large Time Behavior of the Modified Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 498-505. |
[13] | He Yinnian. Optimum Nonlinear Galerkin Algorithm for the Penalized Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 1998, 18(3): 251-256. |
[14] | Yin Huicheng. The Global Existence of Solutions for Three Dimensional Compressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 1998, 18(1): 19-24. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 23
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 81
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|