Acta mathematica scientia,Series A ›› 2014, Vol. 34 ›› Issue (2): 234-250.
• Articles • Previous Articles Next Articles
WANG Xue-Chen, WEI Jun-Jie
Received:
2013-03-18
Revised:
2013-12-16
Online:
2014-04-25
Published:
2014-04-25
Supported by:
国家自然科学基金(11031002, 11201096)和教育部高校博士点基金(20122302110044)资助.
CLC Number:
WANG Xue-Chen, WEI Jun-Jie. The Effect of Delay on a Diffusive Predator-Prey System with Ivlev-Type Functional Response[J].Acta mathematica scientia,Series A, 2014, 34(2): 234-250.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Chen S, Shi J, Wei J. The effect of delay on a diffusive predator-prey system with Holling type-II predator functional response. Communication on Pure and Applied Analysis, 2013, 12: 481--501 [2] Faria T. Normal forms and Hopf bifurcation for partial differntial equations with delays. Trans Amer Math Soc, 2000, 352: 2217--2238 [3] Faria T. Stability and bifurcation for a delayed predator-prey model and the effect of diffusion. J Math Anal Appl, 2001, 254: 433--463 [4] Faria T, Magalh\~{a}es L T. Normal forms for retarded functional differntial equations with parameters and [5] Faria T, Magalh\~{a}es L T. Normal forms for retarded functional differntial equations and applications to Bogdanov-Takens singularity. J Differential Equations, 1995, 122: 201--224 [6] Garvie M R. Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB. Bulletin of Mathematical Biology, 2007, 69: 931--956 [7] Goodwin B C. Temporal Organzization in Cells. London and New York: Academic Press, 1963 [8] Hale J K. Theory of Functinal Differentail Equations.Berlin: Springer-Verlag, 1977 [9] Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation. Cambridge: Cambridge University Press, 1981 [10] Hutchinson G E. Circular causal systems in ecology. Ann N Y Acad Sci, 1948, 50: 221--246 [11] Hu G, Li W. Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects. Nonl Anal Real World Appl, 2010, 11: 819--826 [13] Kay A L, Sherratt J A. Spatial noise stabilizes periodic wave patterns in oscillatory systems on finite domains. SIAM J Appl Math, 2000, 6: 1013--1041 [14] Kooij R, Zegeling A. A predator-prey model with Ivlev's functional response. J Math Anal Appl, 1996, 198: 473--489 [15] Lin X, So J W H, Wu J. Center manifolds for partial differential equations with delay. Proc Roy Soc Edinburgh, 1992, 122A: 237--254 [16] May R M. Complexity and Stability in Model Ecosystems. Princeton, New Jersey: Princeton University Press, 1973 [17] Murray J D. Mathematical Biology. Vol 19. Biomathematics Texts. Berlin: Springer, 1993 [18] Pearce I G, Chaplain M A J, Schofield P G, Anderson A R A, Hubbard S F. Modelling the spatio-temporal dynamics [19] Preedy K F, Schofield P G, Chaplain M A J, Hubbard S F. Disease induced dynamics in host-parasitoid systems: chaos and coexistence. Journal of the Royal Society Interface, 2007, 4: 463--471 [20] Ruan S, Wei J. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Math Anal, 2003, 10: 863--874 [21] Sherratt J A, Lewis M A, Fowler A C. Ecological chaos in the wake of invasion. Proceedings of the National Academy of Sciences of the USA, 1995, 92: 2524--2528 [22] Sherratt J A, Eagan B T, Lewis M A. Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality? Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352: 21--38 [23] Sherratt J A. Periodic travelling waves in cyclic predator-prey systems. Ecol Lett, 2001, 4: 30--37 [24] Sugie J. Two-parameter bifurcation in a predator-prey system of Ivlev type. J Math Anal Appl, 1998, 217: 349--371 [25] Thieme H, Zhao X. A non-local delayed and diffusive predator-prey model. Nonl Anal Real World Appl, 2001, 2: 145--160 [26] Tian R C. Toward standard parameterizations in marine biological modeling. Ecological Modelling, 2006, 193: 363--386 [27] Uriu K, Iwasa Y. Turing pattern formation with two kinds of cells and a diffusive chemical. Bulletin of Mathematical Biology, 2007, 69: 2515--2536 [28] Wang H, Wang W. The dynamical complexity of a Ivlev-type prey-predator system with impulsive effect. Chaos Solitons and Fractals, 2007, 38: 1168--1176 [29] Wang P K C. Asymptotic stability of a time-delayed diffusion system. J Appl Mech Ser E, 1963, 30: 500--504 [30] Wang W, Zhang L, Wang H, Li Z. Pattern formation of a predator-prey system with Ivlev type functional response. [31] Wang X, Wei J. Diffusion-driven stability and bifurcation in a predator-prey system with Ivel-type functional response. Applicable Analysis: An International Journal, 92: 4, 752--775 [32] Wang Y. Asymptotic behavior of solutions for a class of predator-prey reactiondiffusion systems with time delays. [33] Wu J. Theory and Applications of Partial Functional-Differential Equations. New York: Springer, 1996 [34] Xiao D, Ruan S. Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response. [35] Yan X. Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects. Appl Math Comput, 2007, 192: 137--150 [36] Yan X, Zhang C. Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system. Applied Mathematical Modelling, 2010, 34: 184--199 [37] Yi F, Wei J, Shi J. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. [38] Zhang J, Li W, Yan X. Multiple bifurcations in a delayed predator-prey diffusion system with a functional response. [39] Zuo W, Wei J. Stability and Hopf bifurcation in a diffusive predator-prey system with delay effect. Nonl Anal Real World Appl, 2011, 12: 1998--2011 |
|