Acta mathematica scientia,Series A ›› 2014, Vol. 34 ›› Issue (2): 217-226.

• Articles •     Next Articles

Solutions to Inhomogeneous Quasilinear Elliptic Problems with Concave-Convex Type Nonlinearities

 LIANG Zhan-Ping, SU Jia-Bao   

  1. School of Mathematical Sciences, Shanxi University, Taiyuan 030006; School of Mathematical Sciences, Capital Normal University, |Beijing 100048
  • Received:2012-04-19 Revised:2013-03-19 Online:2014-04-25 Published:2014-04-25
  • Supported by:

    国家自然科学基金(11071149, 11171204, 11271264)、教育部高等学校博士点基金(201106118)和山西省自然科学基金(2010011001-1, 2012011004-2)资助.

Abstract:

In this paper we show that the inhomogeneous quasilinear elliptic equations
{-div(Φ(|∨u|)∨u)=μ|u|q-2u+λ|u|p-2u in Ω,
 u=0                                                        on∂Ω,
where Ω ( RN is a bounded domain with smooth boundary ∂Ω, and μλ ∈ R are two parameters, possess infinitely many weak solutions in Orlicz-Sobolev space by using variational methods.

Key words: Inhomogeneous quasilinear elliptic equations,  Orlicz-Sobolev space, Variational methods

CLC Number: 

  • 35J60
Trendmd