Acta mathematica scientia,Series A ›› 2013, Vol. 33 ›› Issue (1): 98-113.
• Articles • Previous Articles Next Articles
CHEN Da-Xue
Received:
2011-04-28
Revised:
2012-06-20
Online:
2013-02-25
Published:
2013-02-25
Supported by:
湖南省自然科学基金(11JJ3010)资助
CLC Number:
CHEN Da-Xue. Bounded Oscillation for Second-order Nonlinear Neutral Delay Dynamic Equations with Oscillating Coefficients[J].Acta mathematica scientia,Series A, 2013, 33(1): 98-113.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Chen D X. Oscillation of second-order Emden-Fowler neutral delay dynamic equations on time scales. Math Comput Modelling, 2010, 51: 1221--1229 [2] Chen D X. Oscillation and asymptotic behavior for nth-order nonlinear neutral delay dynamic equations on time scales. Acta Appl Math, 2010, 109: 703--719 [3] Chen D, Liu J. Oscillation theorems for second-order nonlinear neutral dynamic equations with distributed delay on time scales. J Systems Sci Math Sci, 2010, 30: 1--14 [4] Chen D X, Liu J C. Asymptotic behavior and oscillation of solutions of third-order nonlinear neutral delay dynamic equations on time scales. Can Appl Math Q, 2008, 16: 19--43 [5] Karpuz B. Asymptotic behaviour of bounded solutions of a class of higher-order neutral dynamic equations. Appl Math Comput, 2009, 215: 2174--2183 [6] Hassan T S. Oscillation of third-order nonlinear delay dynamic equations on time scales. Math Comput Modelling, 2009, 49: 1573--1586 [7] Hilger S. Ein Maβkettenkalk\"{u}l mit Anwendung auf Zentrumsmannigfaltigkeiten [D]. W\"{u}rzburg: Universitä}t W\"{u}rzburg, 1988 [8] Spedding V. Taming Nature's numbers. New Scientist, 2003, 179: 28--31 [9] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhäuser, 2001 [10] Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhäuser, 2003 [11] Hardy G H, Littlewood J E, P\'{o}lya G. Inequalities (second ed). Cambridge: Cambridge University Press, 1988 [12] Agarwal R P, Bohner M, O'Regan D, Peterson A. Dynamic equations on time scales: a survey. J Comput Appl Math, 2002, 141: 1--26 [13] Erbe L, Hassan T S, Peterson A. Oscillation criteria for nonlinear damped dynamic equations on time scales. Appl Math Comput, [14] Hassan T S. Oscillation criteria for half-linear dynamic equations on time scales. J Math Anal Appl, 2008, 345: 176--185 [15] Zafer A. On oscillation and nonoscillation of second-order dynamic equations. Appl Math Lett, 2009, 22: 136--141 [16] Ou L. Atkinson's super-linear oscillation theorem for matrix dynamic equations on a time scale. J Math Anal Appl, 2004, 299: 615--629 [17] Medico A D, Kong Q. Kamenev-type and interval oscillation criteria for second-order linear differential equations on a measure chain. [18] Bohner M, Saker S H. Oscillation criteria for perturbed nonlinear dynamic equations. Math Comput Modelling, 2004, 40: 249--260 [19] Do\v{s}l\'{y} O, Hilger S. A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales. J Comput Appl Math, 2002, 141: 147--158 [20] Zhang B G, Shanliang Z. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput Math Appl, 2005, 49: 599--609 [21] Sahiner Y. Oscillation of second-order delay differential equations on time scales. Nonlinear Anal, 2005, 63: 1073--1080 [22] Erbe L, Peterson A, Saker S H. Hille and Nehari type criteria for third-order dynamic equations. J Math Anal Appl, 2007, 329: 112--131 [23] Erbe L, Peterson A, Saker S H. Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales. J Comput Appl Math, 2005, 181: 92--102 [24] Agarwal R P, O'Regan D, Saker S H. Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J Math Anal Appl, 2004, 300: 203--217 [25] Saker S H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J Comput Appl Math, 2006, 187: 123--141 [26] Wu H W, Zhuang R K, Mathsen R M. Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Appl Math Comput, 2006, 178: 321--331 [27] Saker S H, Agarwal R P, O'Regan D. Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. [28] Zhang S Y, Wang Q R. Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl Math Comput, 2010, 216: 2837--2848 [29] Saker S H, O'Regan D. New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution. Commun Nonlinear Sci Numer Simul, 2011, 16: 423--434 [30] Erbe L H, Kong Q, Zhang B G. Oscillation Theory for Functional Differential Equations. New York: Marcel Dekker, 1995 [31] Adivar M, Raffoul Y. A note on "tability and periodicity in dynamic delay equations" (Comput Math Appl, 2009, 58: 264--273. Comput Math Appl, 2010, 59: 3351--3354 [32] Karpuz B. Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients. [33] 李同兴, 韩振来, 张承慧, 孙一冰. 时间尺度上三阶Emden-Fowler动力方程的振动准则. 数学物理学报, 2012, 32: 222--232 [34] Liu Ailian, Wu Hongwu, Zhu Siming, Mathsen R M. Oscillation for nonautonomous neutral dynamic delay equations on time scales. Acta Math Sci (Ser B Engl Ed), 2006, 26: 99--106 |
[1] | Zhang Xiaojian. Oscillation of Generalized Emden-Fowler Differential Equations with Nonlinear Neutral Term [J]. Acta mathematica scientia,Series A, 2018, 38(4): 728-739. |
[2] | Yang Jiashan, Li Tongxing. Oscillation for a Class of Second-Order Damped Emden-Fowler Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2018, 38(1): 134-155. |
[3] | Li Zhouhong, Zhang Fengshuo, Cao Jinde, Alsaedi Ahmed, Alsaadi Fuad E. Almost Periodic Solution for a Non-Autonomous Two Species Competitive System with Feedback Controls on Time Scales [J]. Acta mathematica scientia,Series A, 2017, 37(4): 730-750. |
[4] | Luo Hua. Spectral Theory of Linear Weighted Sturm-Liouville Eigenvalue Problems [J]. Acta mathematica scientia,Series A, 2017, 37(3): 427-449. |
[5] | YANG Jia-Shan. Oscillation Criteria for Second-Order Dynamic Equations with Positive and Negative Coefficients and Damping on Time Scales [J]. Acta mathematica scientia,Series A, 2014, 34(2): 393-408. |
[6] | LIN Quan-Wen, YU Yuan-Hong. Integral Average |of Philos Type for Second Order Nonlinear Oscillation [J]. Acta mathematica scientia,Series A, 2012, 32(4): 661-669. |
[7] | WANG Wu-Sheng, ZHOU Xiao-Liang. A Generalized Pachpatte Type |Inequality on Time Scales and Application to a Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2012, 32(2): 404-413. |
[8] | LI Tong-Xin, HAN Zhen-Lai, ZHANG Cheng-Hui, SUN Yi-Bing. Oscillation Criteria for Third-order Emden-Fowler Delay Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2012, 32(1): 222-232. |
[9] | SANG Yan-Bin, WEI Zhong-Li. Existence of Solutions to a Semipositone Third-order Three-point BVP on Time Scales [J]. Acta mathematica scientia,Series A, 2011, 31(2): 455-465. |
[10] | FENG Yao-Ling. The Solutions of Linear Dynamical Equations in Commutative Banach Algebra on Time Scales [J]. Acta mathematica scientia,Series A, 2011, 31(2): 439-446. |
[11] | LI Yong-Kun, ZHANG Hong-Tao. Positive Periodic Solutions of Neutral Functional Differential Equations with State Dependent Delays on Time Scales [J]. Acta mathematica scientia,Series A, 2010, 30(3): 730-742. |
[12] | Su Youhui;Li Wantong. Triple Positive Symmetric Solutions of Two-Point BVPs for p-Laplacian Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2008, 28(6): 1232-1241. |
[13] | ou liuman;Zhu Siming. Stable Analysis for Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2008, 28(2): 308-319. |
[14] | XU Zhi-Ting, MA Dong-Kui, GU Bao-Guo. Oscillation Theorems for Elliptic Equations of Second Order [J]. Acta mathematica scientia,Series A, 2004, 24(2): 144-151. |
|