Acta mathematica scientia,Series A ›› 2012, Vol. 32 ›› Issue (5): 996-1010.
• Articles • Previous Articles
ZHANG Xin-Guang1, PAN Chuan-Zhong2*
Received:
2011-09-19
Revised:
2012-05-22
Online:
2012-10-25
Published:
2012-10-25
Supported by:
国家自然科学基金(11071141)和山东省自然科学基金(ZR2010AM017)资助
CLC Number:
ZHANG Xin-Guang, PAN Chuan-Zhong. Exsitence of Multiple Positive Solutions for a Semipositone Nonlinear Multi-point Boundary Value Problems[J].Acta mathematica scientia,Series A, 2012, 32(5): 996-1010.
[1] Il'in V, Moiseev E. Nonlocal boundary value problem of the second kind for Sturm-Liouville operator. Diff Eqs, 1987, 23: 803--810 [3] Erbe H, Hu S, Wang H. Multiple positive solutions of some boundary value problems. J Math Anal Appl, 1994, 203: 640--648 [8] Liu B. Positive solutions of a nonlinear three-point boundary value problem. Appl Math Comput, 2002, 132: 11--28 [9] Pang H, Ge W. Existence results for some fourth-order multi-point boundary value problem. Mathematical and Computer Modelling, 2009, 49: 1319--1325 [10] Graef J, Kong L. Necessary and sufficient conditions for the existence of symmetric positive solutions of multi-point boundary value problems. Nonlinear Anal, 2008, 68: 1529--1552 [11] Zhang X, Zou H, Liu L. Positive solutions of second-order m-point boundary value problems with changing sign singular nonlinearity. Applied Mathematics Letters, 2007, 20: 629--636 [12] Ma R. Existence of positive solutions for superlinear semipositone m-point boundary-value problems. Proc Edinburgh Math Soc, 2003, 46: 279--292 [17] Dong S, Zhou H. Two positive solutions of M-point boundary value problems with sign changing nonlinearities. Nonlinear Funct Anal Appl, 2005, 10: 89--102 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 21
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|