Acta mathematica scientia,Series A ›› 1999, Vol. 19 ›› Issue (3): 326-332.
• Articles • Previous Articles Next Articles
Online:
Published:
Abstract:
In this paper,The Wu-differential characteristic set algorithm for computations symmetries of partial differential equations(PDEs) and the united theoretic framework for determination of classical and nonclassical symmetries of PDEs are put forwarded.The algorithm always yield all Determining equatins (D.Es) of symmetry of the considering PDEs and makes the“superlargescale”D.Es equivalently reduce to“smallerscale” set of differential equaitons and therefore significantly decrease the computational efforts of solving D.Es.Also a principle of Mechanical symmetry computing and testing of PDEs'symmetry is given.As an application of our algorithm,completely nonclassical symmetries of Burgers equation are calculated.
Key words: Wumethod, Characteristicset, Symmetries, Differentialequaitons
CLC Number:
Chao Lu. Wuwen-tsun-Differential Charateristic Algorithm of Symmetry Vectors of Partial Differential Equations[J].Acta mathematica scientia,Series A, 1999, 19(3): 326-332.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y1999/V19/I3/326
1 OlverPJ.ApplicationsofLiegroupstoDifferentialequations.New York:SpringerVerlag,1986 2 Herman W.ReviewofsymbolicsoftwareforthecomputationofLiesymmetriesofdifferentialequations.EuromathBull,1994,1:45-79 3 RittJF.DifferentialAlgebra.New York:AMSColloquiumPublication,1950 4 BlumanG W,ColeJD.Thegeneralsimilaritysolutionoftheheadequation.JMath Mech,1969,18:1025-1042 5 Wu Wentsun.OntheFoundationofAlgebraicDifferentialGeometry.MMRP,1989,3 6 ChaoLu.WudCharaSetmethodandItsApplicationstoPDEssymmetriesandMechanics.DoctoralDissertationthesis,DUT,DaLian,China1997,1 7 张鸿庆,朝鲁.算子型Hilbert零点定理及构造弹性力学方程组一般解的符号算法.大连理工大学学报,1996,36(4): 373-379 8 朝鲁.一个计算微分方程(组)对称群的Mathematica程序包及其应用.计算物理,1997,14(3):375-378 9 Fushchich WI.ShtelentW M,SerovNI.SymmetryanalysisandexactsolutionsofequationsofnonlinearMathematicalphysics,M.A..KluwerAcademicpublishers,1993 10 ClarksonPA.Nonclassicalsymmetryreductionsofnonlinearpartialdifferentialequations.MathComputModeling,1993,18(10):45-68
Cited