Acta mathematica scientia,Series A ›› 2012, Vol. 32 ›› Issue (2): 414-423.

• Articles • Previous Articles     Next Articles

An Arrangement Problem of Subspaces of |Symplectic Space and Tighter |Bound of an Error-tolerant Pooling Design

 ZHAO Xiang-Hui1, LI Li2, ZHANG Geng-Sheng2*   

  1. 1.Institute of Science, Hebei University of Science and Technology, Shijiazhuang 050018;
    2.Office of Educational Administration, Xingtai University, Hebei Xingtai 054001;
    3.Mathematics and Information Science College, Hebei Normal University, Shijiazhuang 050016
  • Received:2010-10-08 Revised:2011-09-06 Online:2012-04-25 Published:2012-04-25
  • Contact: ZHANG Geng-Sheng,gshzhang@hebtu.edu.cn E-mail:gshzhang@hebtu.edu.cn
  • Supported by:

    河北省自然科学基金(A2009000253)资助

Abstract:

In this paper, we design a class of new d z-disjunct matrices with the subspaces of the symplectic space and study the following
arrangement problem. Given integers m, r, sν, d, q where ν ≥m≥r+2≥2s≥2, d≥2, q is  a prime power, and a subspace S of type (m, s) of symplectic space F2νq, we find d subspaces of type (m-1, s-1) H1, … Hd of S that maximize the number of the subspaces of type (r, s-1) contained in at least some  Hi (1\le i\le d). Then with obtained result, we give the tighter bound of pooling design.

Key words: Pooling design, d z-disjunct, Symplectic space, Arrangement problem, Tighter bounds

CLC Number: 

  • 05E15
Trendmd