Acta mathematica scientia,Series A ›› 2000, Vol. 20 ›› Issue (4): 521-527.
• Articles • Previous Articles Next Articles
(Beijing Normal University Press, Beijing 100875)
Online:
Published:
Abstract:
This paper will study the percolation model on one kind of lattice fractals(lattice nested fractals), prove that there is no critical phenomenon for this percolation model and give one law of exponent decay. Moreover, it will prove that there is no critical phenomenon for bond percolation model on finite branched graph.
Key words: Lattice nested fractals, Percolation, Critical phenomenon, Law of exponent decay, Finite branched graph
CLC Number:
Lu Jiansheng. Percolation Model on Lattice Nested Fractals[J].Acta mathematica scientia,Series A, 2000, 20(4): 521-527.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2000/V20/I4/521
1.Chen Mufa.From Markovchainstononequilibriumparticlesystems.Singapore:WorldScientific,1992 2 DurrettRT.Lecturenotesonparticlesystemsandpercolation.WadsworthandBrooks/Cole,PacificGrove,California.1988 3 DurrettR T.Tenlecturesonparticlesystems.LectureNotesin Mathematics,1995,1608:97-201 4 EssamJW,FisherM E.Someclustersizeandpercolationproblems.JournalofMathematicalPhysics,1961(2):609-619 5 FisherM E.Criticalprobabilitiesforclustersizeandpercolationproblems.JournalofMathematicalPhysics,1961,(2):620-627 6 Hutchinson.Fractalsandselfsimilarity.IndianaUniversity MathJ,1981,30:713-747 7 KusuokaS.Diffusionprocessesonnestedfractals.LectureNotesin Mathematics,1992,39-98 8 Lindstrm T.Brownianmotiononnestedfractals.Mem AmerMathSoc,1990,420 9 吕建生.SierpinskiCarpet格点图上的渗流模型及其临界现象.数学学报,1999,42(3):545-550 10 吕建生.SierpinskiGasket格点图上的渗流模型.数学进展,1999,28(6):519-526
Cited