Acta mathematica scientia,Series A ›› 2000, Vol. 20 ›› Issue (4): 451-460.
• Articles • Previous Articles Next Articles
(Department of Mathematics,Central China Normal University, Wuhan 430079)
Online:
Published:
Abstract:
J=Jm1(λ1)⊕Jm2(λ2) is the Jordan normal form which has two Jordan blocks Jm1(λ1) and Jm2(λ2).J has square-rooting matrices iff one of following holds:
(i) λ1,λ2≠0;
(ii)λ1=0, but λ2≠0, then m1=1, or λ1≠0, but λ2=0, then m2=1;
(iii) λ1=λ2=0, then m1=m2,m1+1=m2 or m2+1=m1.And we give the expresses of square-rooting matices of J.
Key words: Jordan block, square-rooting matrix, generatized inverse matrix.
CLC Number:
Zhu Degao. On SquareRooting Matrices of the Jordan Matrices Jm1(λ1)⊕Jm2(λ2)[J].Acta mathematica scientia,Series A, 2000, 20(4): 451-460.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2000/V20/I4/451
1 朱德高.一个Jordan块的平方根矩阵.数学物理学报,1999,19(3):317-319 2 熊全淹,叶明川.线性代数.第三版,高等教育出版社,1987 3 Sergelang.LinearAlgebra.SecondEdition,AddisonWesleyPulishingCompany,1970 4 Nick Mackinnon.Fourroutestomatrix.MathGazUSA,1989,73:135-136 5 DenaldSullvan.OnSquarerootingmatricesof2×2matrices.MathGazUSA,1993,77
Cited
Iterative Solution for Systems of a Class of Abstract Operator Equations and Applications
Existence of Positive Periodic Solutions of a Prey-Predator
System with Several Delays
A Spectral Characterization for Stability of C0-semigroups
on ∑e1 Type Banach Spaces