Acta mathematica scientia,Series A ›› 2000, Vol. 20 ›› Issue (3): 309-313.
• Articles • Previous Articles Next Articles
Online:
Published:
Abstract:
The main result of this paper is that stable Banach space with an unconditional monotone Schauder basis is reflexive if and only if it has the fixed point property.
Key words: Nonexpansivemapping, StableBanachspace, Fixedpoint, Ultraproduct
CLC Number:
Hu Changsong. The Fixed Point Property of Stable Banach Spaces with An Unconditional Schauder Basis[J].Acta mathematica scientia,Series A, 2000, 20(3): 309-313.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2000/V20/I3/309
1 DowlingPN,LennardCJ.EverynonreflexivesubspaceofL1[0,1]failsthefixedpointproperty.ProcAmerMathSoc,1997,125(2):443-446 2 MaureyB.PointsfixesdescontractionsdecertainsfaiblementcompactsdeL1 .Seminaired'AnalyseFonctionelleExposenoⅧ EcolePolytechniqueCentredeMathematiques.1980-1981 3 GarlingDJH.StableBanachspace,random measuresandOrliczfunctionspaces,LectureNotesinMathematics928,BerlinHeidelbergNew York:SpringerVerlag,1982 4 LinPK.Unconditionalbasesandfixedpointsofnonexpansivemappings.PacJMath,1985,116:69-75 5 KarlovitzLA.Existenceoffixedpointsfornonexpansivemappingsinspacewithoutnormalstructure.PacJMath,1976,66:153-159
Cited
Iterative Solution for Systems of a Class of Abstract Operator Equations and Applications
Rectangular Crouzeix-raviart Anisotropic Finite Element Method for Nonstationary Stokes Problem with Moving Grids
Unbounded Solutions of Boundary Value Problems on the Half-Line with Countable Impulses