Acta mathematica scientia,Series A ›› 2000, Vol. 20 ›› Issue (2): 202-209.
• Articles • Previous Articles Next Articles
Online:
Published:
Abstract:
We consider Dirichlet problem for mean curvature type equation with singular term and positive parameter ε and prove that the above problem has at least a classical solution for εsmall enough and has no calssical solution for εlarge enough.
Key words: Meancurvaturetypeequation, Dirichletproblem, Classicalsolution.
CLC Number:
Dai Qiuyi. Dirichlet Problem for Mean Curvature Type Equation with Singular Term[J].Acta mathematica scientia,Series A, 2000, 20(2): 202-209.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2000/V20/I2/202
1 JosephDD,LundgrenTS.Quasilineardirichletproblemsdrivenbypositivesources.ArchRatMechAnal,1993,49:241-269 2 BobisudLE.Asymptoticdeadcoresforreactiondiffusionequations.JMathAnalAppl,1990,147:249-262 3 BobisudLE.BehaviorofsolutionsforaRobinproblem.JDifferEqu,1990,85:91-104 4 BaxleyJV.Somesingularnonlinearboundaryvalueproblem.SIAMJMathAnal,1991,22:463-479 5 BaxleyJV.Singularreactiondiffusionboundaryvalueproblems.JDifferEqu,1995,115:441-457 6 KawaradaH.OnthesolutionofinitialboundaryvalueproblemforUt-Uxx=1/1-UPubl.RIMS,KyotoUniv,1975,10: 729-736 7 AckerA,Walter W.Thequenchingproblemfornonlinearparabolicdifferentialequations.Lecture Notesin Math,1976,564:1-12 8 DziukG,KawohlB.Onrotationallysymmetricmeancurvatureflow.JDifferEqu,1991,93:142-149 9 LevineH A.Advancesinquenching,ProgressinNonlinearDifferentialEquationsandTheirApplications.Birkh¨auserBoston,1992,7:319-346 10 GilbargD,TrudingerNS.Ellipticpartiadifferentialequationsofsecondorder.New York:SpringerVerlag,1983 11 DugundjiJ,GranasA.FixedPointTheory.MonografieMath,TOM61,Warszawa,1982 12 BerestyckiH,NirenbergL.Onthemethodofmovingplanesandtheslidingmethod.BolSocBrasMat,1991,22(1):1-37 13 LadyzenskajaO A,SolonnikovV A,UralcevaN N.Linearandquasilinearequationsofparabolictype.Amer MathSocTranslationsofMathematicalMonography.1968,No.23
Cited
Global Structure of Positive Solutions of Singular Nonlinear Sturm-Liouville Problems