Acta mathematica scientia,Series A ›› 2011, Vol. 31 ›› Issue (5): 1447-1458.

• Articles • Previous Articles    

Commutators Generated by Multilinear Fractional Integrals and Lipschitz Functions

 MO Hui-Xia1, ZHANG Zhi-Ying2   

  1. 1.School of Science, Beijing University of Post and Telecommunications, Beijing 100876;
    2.School of Science, Zhejiang Sci-Tech University, Hangzhou 310018
  • Received:2009-12-17 Revised:2010-12-30 Online:2011-10-25 Published:2011-10-25
  • Supported by:

    国家自然科学基金(10871024)和中央高校基本科研业务费专项资金(BUPT 2009RC0703)资助

Abstract:

Let $m\in{\Bbb N}$, $\vec{b}=(b_{1},\cdots ,b_{m})$ whose components are of locally integrable functions, and $\vec{f}=(f_{1},\cdots ,f_{m})$ where $f_{1},\cdots ,f_{m}\in L_{c}^{\infty}({\mathbf{R}}^{n}).$ Let $x\notin\bigcap\limits_{i=1}^{m}\mbox{supp}f_{i},$ then the commutator generated by the multilinear fractional integral is given by
$$I_{\alpha,m}^{\vec{b}}(\vec{f})(x) =\dint_{({\mathbf{R}}^{n})^{m}}K(x,y_{1},\cdots ,y_{m})\prod\limits_{i=1}^{m}(b_{i}(x)-b_{i}(y_{i}))f_{i}(y_i){\rm d}y_1\cdots {\rm d}y_m.$$

When $b_{j}\in\dot{\Lambda}_{\beta_{j}}({{\mathbf{R}}}^{n})~(1\leq j\leq m)$, the authors  establish the boundedness of $I_{\alpha,m}^{\vec{b}}$ on product Lebeasgue spaces, Triebel-Lizorkin spaces and Lipschitz spaces.

Key words: Multilinear fractional integral, Commutator, Triebel-Lizorkin space,  Lipschitz function space

CLC Number: 

  • 42B25
Trendmd