Acta mathematica scientia,Series A ›› 2011, Vol. 31 ›› Issue (4): 1008-1021.

• Articles • Previous Articles     Next Articles

Asymptotic Behavior of Solutions to the Kirchhoff Type Equation

 YANG Zhi-Jian1, CHENG Jian-Ling2   

  1. 1.Department of Mathematics, Zhengzhou University, Zhengzhou |450001|2.Department of Basis, Zhengzhou Huaxin College, Henan Xinzheng 451100
  • Received:2009-07-06 Revised:2011-03-15 Online:2011-08-25 Published:2011-08-25
  • Supported by:

    国家自然科学基金(10971199)和河南省自然科学基金(092300410067)资助

Abstract:

The paper studies the longtime behavior of solutions to the initial boundary value problem (IBVP) of the Kirchhoff type equation with strong damping utt-M(\||\nabla u||{2})Δuut+g(x, u)+h(ut)=f(x), with M(s)=1+sm/2, m≥1. With two different methords, it proves that the related continuous semigroup S(t) posseses in phase space X=(H2(Ω)∩H01(Ω))×H01(Ω) a global attractor. At the end of the paper, an example is shown, which  indicates  the existence of nonlinear functions g(x, u) and h(ut).

Key words: Kirchhoff type equation,  Initial boundary value problem, Infinite-dimensional dynamical system,  Global solution, Longtime behavior of solutions, Global attractor

CLC Number: 

  • 35B40
Trendmd