[1] Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhäuser, 2003
[2] Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
[3] Young R M. An Introduction to Nonharmonic Fourier Series. New York: Academic Press, 1980
[4] Benedetto J J, Li S. The thory of multiresolution analysis frames and applications to filter banks. Appl Comput Harmonic Anal, 1998, 5(4): 389--427
[5] Benedetto J J, Li S. Multiresolution analysis frames with applications. ICASSP'93, Minneapolis, 1993: 304--307
[6] Bownik M. Meyer type wavelet bases in R2. J Approx Theory, 2002, 116(1): 49--75
[7] Kirat I, Lau K S. Classfication of integral expanding matrices and self-affine tiles. Discrete Comput Geom, 2002, 28(1): 49--73
[8] Li Y Z. A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica (English Series), 2006, 22(4): 1051--1062
[9] Cohen A, Daubechies I. Non-separable bidimensionale wavelet bases. Rev Mat Iberoamericana, 1993, 9(1): 51--137
[10] Belogay E, Wang Y. Arbitrarily smooth orthogonal nonseparable wavelets in R2. SIAM J Math Anal, 1999, 30(3): 678--697
[11] Feilner M, Ville D V D, Unser M. An orthogonal family of quincunx wavelets with continuously adjustable order. IEEE Trans Image Processing, 2005, 14(4): 499--510
[12] Han B, Jia R Q. Quincunx fundamental refinable functions and quincunx biorthogonal wavelets. Math Comp, 2002, 71(237): 165--196
[13] Li Y Z. On a class of bidimensional nonseparable wavelet multipliers. J Math Anal Appl, 2002, 270(2): 543--560
[14] Villemoes L F. Continuity of nonseparable quincunx wavelets. Appl ComputHarmonic Anal, 1994, 1(2): 180--187
[15] Kim H O, Kim R Y, Lim J K. On the spectrums of frame multiresolution analyses. J Math Anal Appl, 2005, 305(2): 528--545
[16] de Boor C, DeVore R A, Ron A. On the construction of multivariate (pre)wavelets. Constr Approx, 1993, 9(2/3): 123--166 |