Acta mathematica scientia,Series A ›› 2011, Vol. 31 ›› Issue (1): 82-91.

• Articles • Previous Articles     Next Articles

Generalization of Lyapunov Inequality for |Dirichlet BVPs with Impulses and its Applications

 WENG Ai-Zhi1, SUN Ji-Tao2   

  1. 1.Department of Economics and Management, Shanghai University of Political Science and Law, Shanghai 201701; 2.Department of Mathematics, Tongji University, Shanghai 200092
  • Received:2008-10-08 Revised:2009-11-06 Online:2011-02-25 Published:2011-02-25
  • Supported by:

    国家自然科学基金(60874027)和上海高校选拔培养优秀青年教师科研专项基金(szf08004)资助

Abstract:

In this paper,  first the authors obtain the nonexistence of nontrivial solutions for the linear Dirichlet boundary value problem with impulses

{x(t)+a(t)x(t)=0,tτk,Δx(τk)=ckx(τk),Δx(τk)=dkx(τk),x(0)=x(T)=0,(k=1,2,m)
  where a:[0,T]R, ck and dk are
constants, k=1,2,,mΔx(τk)=x(τk+)x(τk), Δx(τk)=x(τk+)x(τk),
$0<\tau_{1}<\tau_{2}<\cdots<\tau_{m} Secondly, by applying Leray-Schauder degree, the authors obtain the existence and uniqueness of solutions for the nonlinear Dirichlet boundary value problem with impulses
{x(t)+f(t,x(t))=0,tτk,Δx(τk)=Ik(x(τk)),Δx(τk)=Mk(x(τk)),x(0)=x(T)=0,(k=1,2,m)
  where fC([0,T]×R,R),
Ik,MkC(R,R),
k=1,2,,m.
 As a corollary of the  results, the Lyapunov inequality is extended to impulsive systems.

Key words: Impulses,  Boundary value problem, Lyapunov inequality, Leray-Schauder degree,  Existence and uniqueness

CLC Number: 

  • 34B37
Trendmd