[1] 康平, 刘立山. 二阶奇异微分方程边值问题正解的存在性. 数学物理学报,2008, 28A(1): 73--80
[2] 刘衍胜. Banach空间中一类带奇异性的脉冲微分方程边值问题的正解. 数学物理学报,2002, 22A(3): 391--398
[3] Torres P. Weak singularities may help periodic solutions to exist. J Differential Equations, 2007, 232: 277--284
[4] Torres P. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed
point theorem. J Differential Equations, 2003, 190: 643--662
[5] Jiang D, Chu J, Zhang M. Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J Differential Equations, 2005, 211: 282--302
[6] Torres P. Non-trivial periodic solutions of a non-linear Hill's equation with positively homogeneous term. Nonlinear Anal, 2006: 841--844
[7] Chen H, Li Y. Rate of decay of stable periodic solutions of Duffing equations. J Differential Equations, 2007, 236: 493--503
[8] Wong F, Yu S, Ye C, Lian W. Lyapunov's inequality on timescales. Applied Mathematics Letters, 2006, 19: 1293--1299
[9] Torres P, Zhang M. A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum
principle. Math Nach, 2003, 251: 101--107
[10] Zhang M, Li W. A Lyapunov-type stability criterion using Lα norms. Proc Amer Math Soc, 2002, 130: 3325--3333
[11] Deimling K. Nonlinear Functional Analysis. Berlin: Springer, 1985
[12] Cañada A, Montero J, Villegas S. Lyapunov inequalities for partial differential equations. J Funct Anal, 2006, 237: 176--193
[13] Liapunov A. Probleme général de la stabilitédu mouvement. Ann of Math Stud, Vol 17. Princeton, NJ: Princeton Univ Press, 1949
\REF{
[14]} 郭大均, 孙经先, 刘兆理. 非线性常微分方程泛函方法. 山东: 山东科学技术出版社, 2005 |