Acta mathematica scientia,Series A ›› 2010, Vol. 30 ›› Issue (6): 1604-1611.
• Articles • Previous Articles Next Articles
WANG Hui-Jian1, SUN Dao-Chun2
Received:
Revised:
Online:
Published:
Supported by:
国家自然科学基金(10471048)及高等学校博士学科点专项科研基金(20050574002)资助
Abstract:
By studying the convergence and the growth of bi-random Dirichlet series ∑∞n=0anXn(ω)e-λn(ω)s in with coefficients {Xn}(ω): n≥0, being unidentically distributed B-valued φ-mixing random sequences, satisfying d p σnp \triangleq d pE ll Xnllp≤ Epll Xnll< ∞ (p>1, d>0), under centain suitable conditions, the authors obtain such results: on the whole plane, the bi-random Dirichlet series and some Dirichlet series almost surely have the same abscissa of convergence (uniform convergence, or absolute convergence), the same order of growth and (p, q)(R)-order, and the necessary and sufficient conditions of the bi-random Dirichlet series almost surely with the same order after rearrangement of the coefficients.
Key words: φ-mixing random sequences, B-valued bi-random Dirichlet series, Order of growth, Rearrangement, (p, q)(R) order
CLC Number:
WANG Hui-Jian, SUN Dao-Chun. B-valued Bi-random Dirichlet Series[J].Acta mathematica scientia,Series A, 2010, 30(6): 1604-1611.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2010/V30/I6/1604
[1] 王志刚,方勇. B -值双随机Dirichlet级数的收敛性. 数学物理学报, 2005, 25A(7): 990--995
[2] 陆传荣,林正炎. 混合相依变量极限理论. 北京:科学出版社, 1997
[3] Guha U C. Rearrangements of the coefficients of a power series. Math Zeitschr, 1961, 75: 325--327
[4] 孔荫莹,孙道椿. 关于两类狄里克莱级数系数的重排. 数学的实践与认识, 2005, 35(11): 188--193
[5] 贺隆贞. 关于狄里克莱级数确定的整函数的(p, q)(R)级和下(p, q)(R)级. 武汉大学学报(自然科学版), 1982, (3): 73--89
Cited
Iterative Solution for Systems of a Class of Abstract Operator Equations and Applications