Acta mathematica scientia,Series A ›› 2001, Vol. 21 ›› Issue (zk): 616-624.
• Articles • Previous Articles Next Articles
RAN Qi-Kang, CHEN Hui-Yu
Online:
Published:
Abstract:
该文使用Lions的集中紧性原理和变分方法,证明了一类非齐次拟线性椭圆型方程对应的障碍问题中极小正解的存在性.
Key words: 二阶拟线性椭圆障碍问题, 极小正解, 临界Sobolev指数
CLC Number:
RAN Qi-Kang, CHEN Hui-Yu. Exittence of Minimal Positive Solution of a Class of Quasilinear Elliptic Obstacle Problems[J].Acta mathematica scientia,Series A, 2001, 21(zk): 616-624.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2001/V21/Izk/616
1 EkelandI.Nonconvexminimizationproblems.BullAm MathSci,1979,1:443-474 2 AzoreroJG,AlonsoIP.Multiplicityofsolutionsforellipticproblemswithcriticalexponentorwithanonsymmetric term.TransAm MathSoc,1991,323(2):87-89 3 HeinonenJ,KilpelAinenT,MartioO.Nonlinearpotentialtheoryofdegenerateellipticequations.OxfordUniversity Press,1993 4 LiGongbao,MartioO.StabilityinObstacleproblems.MathScand,1994,75:87-100 5 LiGongbao,MartioO.Stabilityofsolutionsofvaryingdegenerateellipticequations.IndianaUniversityMathematicsJournal,1998,47(3):873-891 6 GiaquintaM.Gultipleintegralsinthecalculsofvariationsandnonlinearellipticsystems.Princeton,1983 7 PetriJuutinen.MinimizationproblemsforLipschitzfunctionsviaviscositysolutions.AnnAcadSciFennMathDisser tations,1998,115:1-53 8 LionsPL.Theconcentrationcompactnessprincipleinthecalculusofvariation,thelimitcase,part1,2.Rev MatIberoamericana,1985,1:145-201;2:45-121 9 YangJianfu.Positivesolutionsofquasilinearellipticobstacleproblemswithcriticalexponents.NonlinearAnalysis,Theory,Metho犱s& Applications,1995,25(12):1283-1306 10 RanQikang,FangAinong.ExistenceofinfinitelymanysolutionsonaclassrllipticequationswithNeumannproblem.ChineseJournalofContemporary Mathematics,2000,21(2):87-95
Cited